

Daniel Enériz eneriz@unizar.es

MIBCI-QCNNs

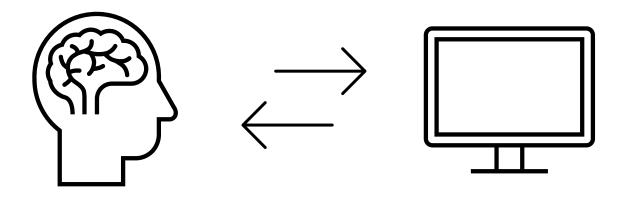
- 1. Introducción
- 2. Materiales y métodos
- 3. Resultados
- 4. Conclusión

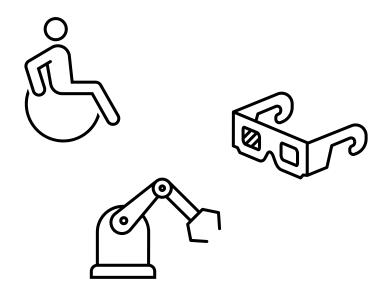
9^a Jornada de Jóvenes Investigadores de Química y Física de Aragón, 16/12/2021

Brain-Computer Interface basada en el procesado de EEG on the edge para reconocimiento de tareas de imaginación motora

Daniel Enériz, Ana Caren Hernández-Ruiz, Nicolás Medrano y Belén Calvo

{eneriz, anaacaren, nmedrano, becalvo}@unizar.es Grupo de Diseño Electrónico (GDE-I3A)




Brain-Computer Interfaces (BCIs)

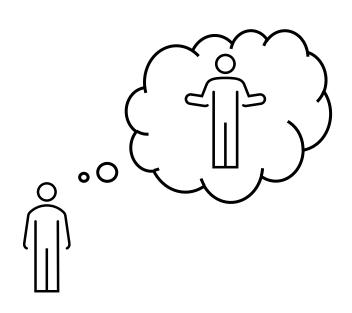
Daniel Enériz eneriz@unizar.es

- 1. Introducción
- 2. Materiales y métodos
- 3. Resultados
- 4. Conclusión

- Comunicación entre humanos y maquinas
- Diferentes campos de aplicación

Motor imagery (Imagen motora)

Daniel Enériz eneriz@unizar.es

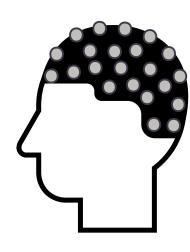

MIBCI-QCNNs

- 1. Introducción
- 2. Materiales y métodos
- 3. Resultados
- 4. Conclusión

 Uno de los paradigmas más populares en BCIs

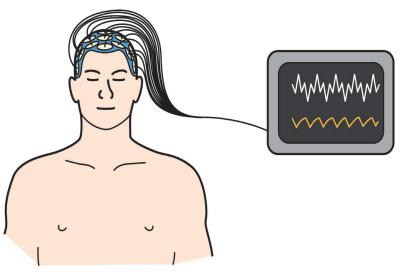
Simulación mental de movimientos reales

 Cada movimiento actúa como un trigger de la BCI



Electroencefalogramas (EEGs)

Daniel Enériz eneriz@unizar.es


- 1. Introducción
- 2. Materiales y métodos
- 3. Resultados
- 4. Conclusión

- Señales relacionadas con la actividad cerebral más populares
- Fáciles de adquirir y no invasivas

"Brain Computer Interface / g-tech medical engineering" by Ars Electronica is licensed under CC BY-NC-ND 2.0

"EGG" by The Clear Communication People is licensed with CC BY-NC-ND 2.0. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/2.0/

Procesado de EEGs

Daniel Enériz eneriz@unizar.es

MIBCI-QCNNs

- 1. Introducción
- 2. Materiales y métodos
- 3. Resultados
- 4. Conclusión

Feature extractor
CSP
ICA
WT
Classifier
SVM
kNN
DT

Convolutional Neural Networks (CNNs)

[2] Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A Compact Convolutional Neural Network for EEG-Based Brain–Computer Interfaces. *J. Neural Eng.* **2018**, *15*, 056013, doi:10.1088/1741-2552/aace8c.

Hardware

Daniel Enériz eneriz@unizar.es

MIBCI-QCNNs

- 1. Introducción
- 2. Materiales y métodos
- 3. Resultados
- 4. Conclusión

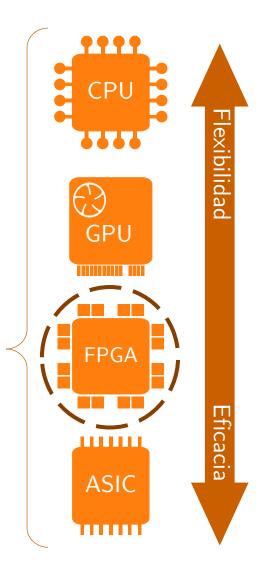
Menos requisi

Dos alternativas

Cloud Computing

Conexión activa a internet

- Gran consumo de energía
- Posible pérdida de privacidad


Menos requisitos computacionales

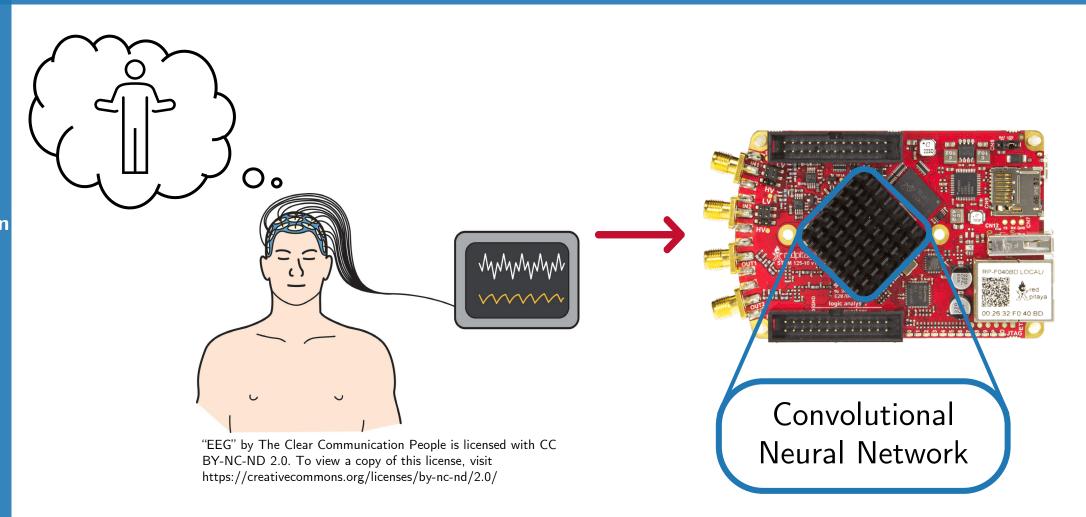
Edge Computing

Sin conexión activa a internet

- Menos consumo de energía
- Sin pérdida de privacidad

Más requisitos computacionales

16/12/2021



Esquema global

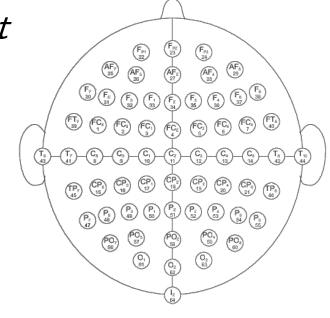
Daniel Enériz eneriz@unizar.es

MIBCI-QCNNs

- 1. Introducción
- 2. Materiales y métodos
- 3. Resultados
- 4. Conclusión

16/12/2021

Dataset


Daniel Enériz eneriz@unizar.es

MIBCI-QCNNs

- 1. Introducción
- 2. Materiales y métodos
- 3. Resultados
- 4. Conclusión

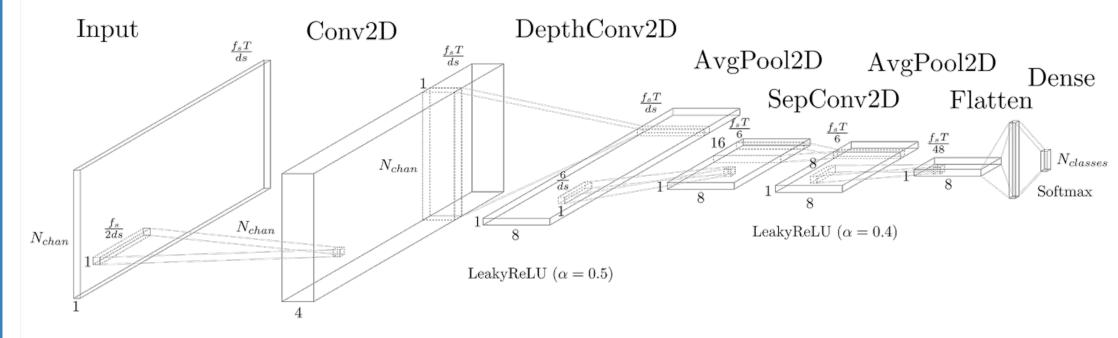
• Physionet Motor Movement/Imagery dataset

- 105 sujetos: 64 canales de EEG @ 160 Hz
- 4 clases:
 - L: Imaginar abrir y cerrar puño izquierdo
 - R: Imaginar abrir y cerrar puño derecho
 - 0: Descansar
 - F: Imaginar abrir y cerrar ambos pies
- Parametrización: reducción del dataset→reducción del modelo

N _{classes}	2	3	4
Labels	L/R	L/R/0	L/R/0/F

[4] Goldberger, A.L.; Amaral, L.A.N.; Glass, L.; Hausdorff, J.M.; Ivanov, P.Ch.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.-K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. *Circulation* **2000**, *101*, doi:10.1161/01.CIR.101.23.e215.

Arquitectura de la red


LeakyReLU ($\alpha = 0.6$)

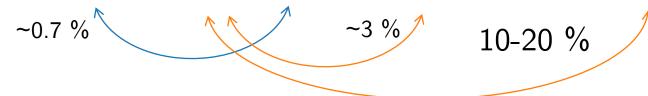
Daniel Enériz eneriz@unizar.es

MIBCI-QCNNs

- 1. Introducción
- 2. Materiales y métodos
- 3. Resultados
- 4. Conclusión

- Basada en la EEGNet-4,2, adaptada al dataset (parametrizado)
 - Sustitución de la ELU por la LeakyReLU (implentación más simple)
 - Capas BatchNormalization y Droput eliminadas

16/12/2021

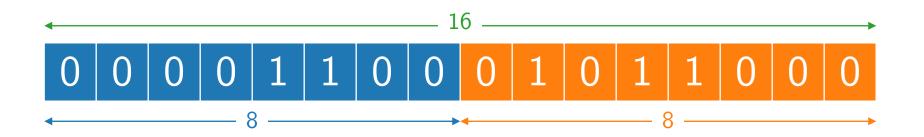


Resultados: Validation accuracy (%)

Daniel Enériz eneriz@unizar.es

- 1. Introducción
- 2. Materiales y métodos
- 3. Resultados
- 4. Conclusión

$\mathcal{N}_{ ext{classes}}$	Dose et al. [1]		Wang et al. [2]		Proposed work			
					ds = 1		ds = 2	
	Global	SS-TL	Global	SS-TL	Global	SS-TL	Global	SS-TL
2	80.38	86.49	82.43	84.32	83.15	87.46	82.52	93.10
3	69.82	76.25	75.07	80.07	75.74	83.26	75.34	93.21
4	58.59	68.51	65.07	70.83	65.75	74.31	65.56	89.23


- [1] Dose, H.; Møller, J.S.; Iversen, H.K.; Puthusserypady, S. An End-to-End Deep Learning Approach to MI-EEG Signal Classification for BCIs. *Expert Systems with Applications* **2018**, *114*, 532–542, doi:10.1016/j.eswa.2018.08.031.
- [2] Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A Compact Convolutional Neural Network for EEG-Based Brain–Computer Interfaces. *J. Neural Eng.* **2018**, *15*, 056013, doi:10.1088/1741-2552/aace8c.

Efecto del paso a FPGA

Daniel Enériz eneriz@unizar.es

- 1. Introducción
- 2. Materiales y métodos
- 3. Resultados
- 4. Conclusión

- Modelo elegido: T=3s, ds=2, $N_{chan}=64$, $N_{classes}=4$
- Validation accuracy tras el entrenamiento: 65.56%
- Validation accuracy tras implementación (16,8): 65.45%
- Diferencia: **0.11%** ← Negligible!

Conclusiones

Daniel Enériz eneriz@unizar.es

MIBCI-QCNNs

- 1. Introducción
- 2. Materiales y métodos
- 3. Resultados
- 4. Conclusión

• BCI basada en MI con procesado de EEG on the edge

- Adaptación de la EEGNet:
 - Para trabajar con el dataset de MI de Physionet
 - Con reducción parametrizada
- Implementación con datos de punto fijo
 - Menos consumo de recursos: FPGAs de bajo coste
 - Pérdida de *accuracy* negligible

Daniel Enériz eneriz@unizar.es

MIBCI-QCNNs

- 1. Introducción
- 2. Materiales y métodos
- 3. Resultados
- 4. Conclusión

 9^{2} Jornada de Jóvenes Investigadores de Química y Física de Aragón, 16/12/2021

¡Gracias! ¿Preguntas?

Daniel Enériz, Ana Caren Hernández-Ruiz, Nicolás Medrano y Belén Calvo {eneriz, anaacaren, nmedrano, becalvo}@unizar.es Grupo de Diseño Electrónico (GDE-I3A)

