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Abstract— The development of real-time, reliable, low-cost 

automatic Phonocardiogram (PCG) analysis systems is critical 
for early detection of Cardiovascular Diseases (CVDs), especially 
in countries with limited access to primary health care programs. 
Once the raw PCG acquired by the stethoscope has been 
preprocessed, the first key task is its segmentation into the 
fundamental heart sounds. For this purpose, an optimized 
hardware implementation of the segmentation algorithm is 
essential to attain a computer-aided diagnostic system based on 
PCGs. This paper presents the optimization of a U-Net-based 
segmentation algorithm for its implementation in a low-end 
Field-Programmable Gate Array (FPGA) using low-resolution 
fixed-point data types. The optimization strategies seek to reduce 
the system latency while maintaining a constrained consumption 
of FPGA resources, aiming for a real-time response from the 
stethoscope data acquisition to the CVDs detection. Experimental 
results prove a 64% decrease in latency compared to a baseline 
version, a 3.9% reduction of Block Random Access Memory, 
which is the limiting resource of the design, and a 70% reduction 
in energy consumption. To the best of our knowledge, this is the 
first work to exhaustively study different optimization strategies 
for implementing a large 1D U-Net-based model, achieving real-
time fully characterized performance. 
Index Terms— Convolutional neural networks, computer-aid 
diagnostic, cardiovascular diseases detection, deep learning, edge 
AI, embedded systems, FPGA, heart sound segmentation 

 
This work has been supported by PID2019-106570RB-

I00/AEI/10.13039/501100011033/ FEDER, UE, PID2022-138785OB-
I00/AEI/10.13039/501100011033/ FEDER, UE, and PID2020-116417RB-
C42/AEI/10.13039/501100011033/ FEDER, UE projects. This work was 
completed while D.E. was beneficiary of PhD grant BOA20201210014 by the 
“Gobierno de Aragón”, A.J.R.-A. was beneficiary of a pre-doctoral fellowship 
by the “Agencia Canaria de Investigación, Innovación y Sociedad de la 
Información (ACIISI)” of the “Consejería de Economía, Conocimiento y 
Empleo” of the “Gobierno de Canarias”, which is part-financed by the 
European Social Fund (FSE) (POC 2014-2020, Eje 3 Tema Prioritario 74 
(85%)) and, H.F. was beneficiary of the FJC2020-043474-I funded by 
MCIN/AEI/10.13039/501100011033 and by the European Union 
“NextGenerationEU/PRTR”. (D.E. and A.J.R.-A. are co-first authors) 
(Corresponding author: Nicolás Medrano). 

D.E., N.M. and B.C. are with the Aragon Institute of Engineering Research, 
University of Zaragoza, Spain (email: {eneriz, nmedrano, becalvo}@unizar.es). 
A.J.R.-A., H.F., S.O., G.M.C. and F.J.B.-F. are with the Research Institute for 
Applied Microelectronics, University of Las Palmas de G.C., Spain (e-mail: 
{aralmeida, hfabelo, sortega, gustavo}@iuma.ulpgc.es; fbalea@cop.es;). S.O. 
is also with Norwegian Institute of Food, Fisheries and Aquaculture Research, 
Norway. H.F. is also with Fundación Canaria Instituto de Investigación 
Sanitaria de Canarias, Spain. F.J.B.-F.is also with Dept. of Psychology, 
Sociology and Social Work, University of Las Palmas de Gran Canaria, Spain. 

I. INTRODUCTION 
N 2019, 17.9 million people died due to Cardiovascular 
Diseases (CVDs), the leading cause of death, with 32% of 
deaths worldwide [1]. More than three-quarters of these 

CVD deaths occurred in low- and middle-income countries, 
where people with risk factors often do not have access to 
primary health programs for early detection and treatment. 
Moreover, cardiac auscultation performed by a medical doctor 
using a stethoscope, which is the fundamental method for 
CVD screening, is challenging to learn, resulting in only 20% 
of cardiac events being detected by internal medicine and 
family practice residents [2]. These two factors have 
motivated the development of automatic Phonocardiogram 
(PCG) analysis in recent years [3], [4], as a computer-aided 
decision system based on auscultation would lead to improved 
accuracy and shorter diagnostic times, thus facilitating the 
referral of patients to cardiology doctors. Therefore, a system 
such as a processing unit that automatically analyses the PCG 
in real-time attached to the traditional stethoscope can be a 
feasible solution to provide a more efficient CVD screening 
process. 

PCGs are recordings of the heart sounds made during its 
mechanical and physiological activity, resulting from the 
opening and closure of the cardiac valves. As drawn in Fig. 1, 
two main sounds, S1 and S2, are produced when the 
atrioventricular and the semilunar valves close, respectively. 

I 

 
Fig. 1. Illustrative example of a PCG signal, where the 
fundamental sounds S1 and S2 and the systole (Sys) and 
diastole (Dias) intervals are labeled. The limits of each 
cardiac cycle are also marked with vertical lines. 
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These sounds define the duration of the cardiac cycle, which is 
divided into two periods: systole and diastole. Apart from the 
fundamental sounds (S1 and S2), additional sounds can appear 
in the PCGs. These sounds are often related to cardiac murmurs, 
possibly associated with CVDs. Recognizing and describing 
these murmurs in a first screening is crucial to decide whether a 
patient must be referred to a cardiologist [5]. Please note that 
Fig. 1 shows an illustrative example. In medical practice, PCG 
signals are mixed with different noise sources such as the 
patient’s breathing, skin contact with the stethoscope, 
background conversations, etc. 

In recent years, several studies have addressed different tasks 
in the heart-sound analysis field by employing a wide variety of 
algorithms. One of the most basic tasks is the segmentation of 
the PCG, that is, the recognition of its fundamental components: 
S1, systole interval, S2, and diastole interval, as shown in Fig. 1. 
In [6], a segmentation algorithm based on a Duration-
Dependent Hidden Markov Model (DHMM) was presented, 
first introducing an explicit model of heart-sound time duration. 
Based on this work, another Hidden Semi-Markov Model 
(HSMM) was introduced in [7], which uses logistic regression 
in the model probabilities and additional input features, 
achieving significant improvements. An additional logistic 
regression segmentation algorithm based on the HSMM was 
presented in [8], which uses adaptive sojourn time parameters. 

Finally, inspired by the success of U-Net [9] in image 
segmentation, the work presented in [10] introduces the use of 
Convolutional Neural Networks (CNN) for heart-sound 
segmentation. The analysis of performance included in [10], 
showed that the U-Net-based model outperformed the existing 
reference algorithms to date ([6], [7], [8]), establishing the 
current state-of-the-art in this field. A summary of this analysis 
comparing the algorithms in [6], [7], [10] is available in Table I, 
where the U-Net-based model outperforms in three different 
metrics. The adaptive sojourn temporal modeling described in 
[8] is also evaluated in [10], with slight improvements in 
sensitivity. For these reasons, the U-Net-based model described 
in [10] was the one selected to be implemented in this work. 

A critical aspect that must be considered when developing an 
automatic PCG analyzer is the hardware running the algorithm 
and its time response. Because computer-aided diagnostic 
systems must be real-time responsive, an optimized algorithm 
implementation is required, especially in computationally 
intensive solutions, such as machine and deep learning models. 
Moreover, owing to the substantial impact of CVDs in low- and 
middle-income countries, it is desirable to have a low-cost and 
Internet-independent system suitable for use in areas where the 
main resources are not regularly available. Additionally, as 
clinical data are sensitive, their privacy must be ensured, 
making their processing undesirable in third-party datacenters 
such as Big Tech cloud services. For these reasons, an edge-
computing solution is the best option, because this choice 
entails single device acquiring and processing the data. 

Four leading hardware platforms are widely used to 
implement algorithms: Central Processing Units (CPUs), 
Graphic Processing Units (GPUs), Field-Programmable Gate 

Arrays (FPGAs), and Application-Specific Integrated Circuits 
(ASICs). Heterogeneous systems are also emerging by 
combining previous platforms. 

CPUs are the most general-purpose approach, but with very 
limited parallelization capability, whereas ASICs are specific 
solutions that can provide full parallelization. GPUs and FPGAs 
lie in between, both are general-purpose and highly 
parallelizable, but their nature differs in terms of flexibility and 
adaptability. GPUs are particularly well-suited for parallel 
processing tasks, making them ideal for graphics rendering and 
batch training of deep learning models, but often with high 
energy consumption. Their development methodology is 
straightforward thanks to the extended support of libraries such 
as CUDA and OpenCL [11], [12]. 

On the other hand, FPGAs offer a unique advantage with 
their reconfigurable hardware, allowing for custom hardware 
acceleration tailored to specific algorithms and unlocking great 
optimization capabilities. While GPUs excel at tasks with high 
data parallelism, FPGAs offer a more flexible and adaptable 
solution while supporting high parallelization capabilities, 
making them suitable for a wider range of applications, 
especially those requiring low-latency and power efficiency, 
such as a real-time CVDs screening device requires. 

The drawback of using FPGAs is the development 
methodology, as they require the hardware  description to be 
implemented. Fortunately, there are High-Level Synthesis 
(HLS) tools that enable FPGA programming from an 
algorithmic description, thus shortening the implementation 
time close to its GPU counterpart while maintaining a high-
level of control over the synthesized design. Moreover, the 
possibility of using fixed-point data types of arbitrary lengths in 
HLS allows further optimization of the algorithms by lowering 
the resolution of the data types below 16 bits. The 
implementation of custom hardware for optimized inference of 
machine and deep learning models in FPGAs has become 
popular in recent years [13], [14], [15], [16], [17], thanks to the 
advance in HLS tools, opening up the possibility of using low-
cost FPGAs as target platforms to implement artificial 

TABLE I 
PERFORMANCE COMPARISON WITH SEGMENTATION 
ALGORITHMS PROPOSED IN THE LITERATURE. DATA 

EXTRACTED FROM [10], TABLE I. 
N AR (%) S (%) P+ (%)  

64 
82.5±2.8 83.3±3.5 87.3±3.1 Schmidt et al. [6] 
86.0±2.5 87.9±3.2 90.8±2.7 Springer et al. [7] 
91.5±1.6 91.2±2.3 94.1±2.1 Renna et al. [10] 

128 
84.5±2.8 87.1±3.7 89.7±3.8 Schmidt et al. [6] 
87.2±2.1 89.8±3.2 92.1±2.8 Springer et al. [7] 
92.6±1.6 92.7±2.0 95.6±2.0 Renna et al. [10] 

256 
85.4±3.4 89.4±4.6 91.1±3.8 Schmidt et al. [6] 
88.1±2.4 91.6±3.2 93.2±2.7 Springer et al. [7] 
93.0±1.7 94.3±1.9 95.4±2.0 Renna et al. [10] 

512 
87.4±2.6 92.7±3.1 93.3±2.8 Schmidt et al. [6] 
89.8±1.2 94.3±1.8 94.8±1.8 Springer et al. [7] 
93.7±1.0 95.2±1.2 95.8±1.4 Renna et al. [10] 

The description of N is available in Section III. Symbols AR, S, and P+ stand for recording 
accuracy, sensitivity and positive predicted value, respectively, and are described in 
Section V B 1. 
The results of Renna et al. [10] shown here use the sequential max temporal modelling, 
which is the temporal modelling used in this work. 
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intelligence models. Finally, the heterogeneous platforms, such 
as the Xilinx® ZynqTM 7000 series [18], allow the distribution of 
the computational workload between the CPU and FPGA 
during prototyping periods. This unique characteristic enhances 
flexibility by allowing developers to fine-tune the allocation of 
processing tasks based on their nature and complexity. For 
example, the Xilinx® ZynqTM 7000 series seamlessly integrates 
a powerful ARM Cortex-A9 processor with an FPGA fabric, 
providing a versatile environment for algorithm development. 

Additionally, one of the advantages of using deep learning 
models with hierarchical architectures is their ability to 
introduce parameters to control their size. This is especially 
advantageous when the model must be implemented on low-end 
hardware, because this opens another way to adapt the model to 
its target optimally [19]. 

Only a few studies have presented hardware implementations 
of heart-sound segmentation algorithms based on deep learning. 
Kwiatkowski et al. [20] implemented a small CNN in an ARM 
Cortex M7 processor with an inference time of 11 ms, using an 
8-bit representation. Vakamullu et al. [21] used a Raspberry Pi 
3B (quad-core ARM Cortex A53) to implement a 1-dimensional 
CNN. They used different combinations of the decimation 
factor of the data and kernel size of the CNN to fit the model on 
the targeted device. No execution times have been reported, 
even though their design has been physically validated. These 
works prove the feasibility of the implementation of deep 
learning heart-sound segmentation algorithms on 
microprocessors like ARM Cortex-M and -A series with 
real-time performance. Even so, the heart-sound segmentation 
algorithm is just a first step in a real-time CVDs screening 
device, that will require the concurrent operation of multiple 
algorithms, probably being most of them deep learning 
models. For these reasons we believe an FPGA is a more 
suitable device for this purpose, since the customization, 
optimization, and parallelization capabilities these devices 
have will unlatch the concurrent operation of the following 
stages, as a murmur detector. Finally, the selection of a 
heterogeneous platform, such as the Xilinx® ZynqTM 7000 series 
will allow the rapid swapping of the computational workload 
between the CPU and the FPGA during the development of the 
system. 

This work proposes an optimization of the implementation of 
a U-Net-based segmentation algorithm targeting the Xilinx® 
ZynqTM 7020 FPGA, as a first stage towards the development of 
a real-time CVDs screening device. This work involves the 
following contributions: 

1) Reproduction of the U-Net-based segmentation 
algorithm with sequential max temporal modeling, 
evaluated over the 2016 Physionet/CinC Challenge 
dataset [22], [23]. 

2) Evaluation of the model over the CirCor DigiScope 
Phonocardiogram dataset [23], [24] proving its 
suitability for a more extensive dataset with 
environmental noise. 

3) Identification of novel architecture parameters that 
enable further control of the model size, and computation 

of the effects these parameters have on the performance 
metrics, number of model operations, and memory 
consumption. 

4) Exploration of two different implementation strategies: 
one with shared memory for feature maps and the other 
with streaming dataflows. For each strategy, the impact 
of the model reduction parameters on the model 
accuracy, FPGA resource consumption, and latency (i.e., 
execution time or inference time) of the model are 
analyzed. 

5) Offline evaluation of model performance and FPGA 
resource consumption with different low-resolution 
fixed-point representations using the aforementioned 
public datasets. 

6) Perform the preliminary step to envision a hand-held and 
low-power device that automatically detects heart sound 
abnormalities, enabling the detection of early signs of 
CVDs in the clinical practice in short periods of time.  

To the best of our knowledge, this is the first work that 
assesses an in-depth study of the U-Net-based cardiac sounds 
segmentation algorithm targeting an FPGA implementation. It 
includes an exhaustive analysis of the influence of the 
aforementioned model reduction parameters and the 
optimization of the model implementation to achieve the best 
performance in terms of (i) classification metrics, (ii) latency, 
and (iii) FPGA resource consumption, thus demonstrating that 
the state-of-the-art cardiac sounds segmentation algorithm can 
be executed in real-time on a low-end device. 

The rest of the paper is organized as follows: Section II 
introduces the underlying concepts of the operations in CNNs 
and the basis of the HLS tools to the reader;  the U-Net-based 
segmentation model is presented in Section III; Section IV 
includes the methodology followed for the model optimization 
during the training and implementation steps; the datasets used 
for experiments, the target FPGA, the results of the training, the 
HLS C simulations with fixed-point representations, the 
synthesis, the C/RTL co-simulation and a comparison with 
other implementations are included in Section V. Finally, some 
conclusions are drawn in Section VI. An open-source release of 
the code used in this work is available on GitHub 1. 

II. BACKGROUND 

A. Convolutional Neural Networks 
CNNs are a type of neural network capable of extracting 

features from data using convolutional structures inspired by 
the biological vision perceptron. These architectures have 
been particularly successful in computer vision and solving 
tasks such as object detection [25] with state-of-the-art 
accuracy. CNNs have also shown promising results in the 
biomedical field at tasks such as image segmentation [9] and 
disease classification [26].  

The output of each convolutional layer is called a feature 
map because it is composed of the features learned by the 

 
1https://github.com/eneriz-daniel/PCG-Segmentation-Model-Optimization/ 
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corresponding layer. The key layer parameter is the 
convolutional kernel, which represents the vision receptors. 
Because they have a limited size, they are affected by border 
effects, thereby reducing the output feature map. To fix this, 
padding can be employed to enlarge the input with zeros, and 
thus cancel the border effects. In addition, stride is the 
parameter that controls the density of the convolution 
operations: the larger it is, the lower the density. 

In the U-Net-based segmentation model, as temporal signals 
are processed (i.e., PCGs), the convolutional layers are all 1D. 
In addition, they all have a stride of one and 1D kernels with a 
size of three. The input matrix is denoted as 𝐀𝐀 ∈ ℝ𝑁𝑁m×𝑛𝑛in and 
the output as 𝐁𝐁 ∈ ℝ𝑁𝑁m×𝑛𝑛out , where 𝑁𝑁m is the number of 
elements along the time axis, 𝑛𝑛in is the number of input 
features, and 𝑛𝑛out  is the number of output features, the 
operation is defined as 

 𝐁𝐁𝑖𝑖,𝑘𝑘 = � � 𝐀𝐀𝑙𝑙,𝑗𝑗𝐖𝐖𝑙𝑙−𝑖𝑖+1, 𝑗𝑗, 𝑘𝑘 

𝑛𝑛in−1

𝑗𝑗=0

min(𝑁𝑁m−1, 𝑖𝑖+1)

𝑙𝑙=max(0, 𝑖𝑖−1)
 (1) 

where the generic notation for elements in a matrix is 𝐂𝐂𝑖𝑖,𝑗𝑗 , that 
denotes the i-th element in the time axis of the j-th feature. In 
addition, the weights tensor is denoted by W∈ ℝ𝑁𝑁m×𝑛𝑛in×𝑛𝑛out  
and the element subscripts in the 𝐖𝐖𝑖𝑖, 𝑗𝑗, 𝑘𝑘 correspond to the 
time dimension, input features, and output features, 
respectively. Besides, instead of zero-padding the inputs, the 
spatial dimensions are preserved along the feature maps in (1) 
by adjusting the kernel operation limits. Finally, after the 
operation of the convolutional layer, a nonlinear activation 
function is applied to the output matrix B. In this study, three 
different activation functions are used: the rectified linear unit 
(ReLU), which operates elementwise and is defined as 

 ReLU(𝑧𝑧) = max(0,  𝑧𝑧)  ; (2) 

ArgMax, which returns the index of the maximum when 
operating over a vector, and SoftMax, which is defined as 

 σ(𝒛𝒛)𝑖𝑖 = 𝑒𝑒𝑧𝑧𝑖𝑖

∑ 𝑒𝑒𝑧𝑧𝑗𝑗
𝑗𝑗

  . (3) 

Additionally, CNN architectures also comprise layers that 
manipulate the feature maps: pooling layers that reduce their 
dimensionality, up-sampling layers that operate conversely, 
increasing them, and concatenation layers that allow stacking 
them.  

B. High-Level Synthesis 
HLS tools have become popular in hardware design, 

increasing abstraction from the Register Transfer Level 
(RTL), whose complexity lengthens the development time in 
System-on-Chip (SoC) designs. Basically, they enable 
hardware synthesis from a high-level language, which 
automatically generates the equivalent Hardware Description 
Language (HDL); therefore, the design is easily implemented 
in a hardware platform, such as an FPGA or ASIC, without the 
need to develop an RTL design [27], [28].  

Specifically, Vivado HLS is a tool suitable for synthesizing 
and implementing a design from an algorithmic description, 
converting C/C++ code into HDL, which can be used to 

program a Xilinx® FPGA. This process is based on four 
steps:1) HLS C simulation, which runs the description code 
and validates its operation; 2) synthesis, which generates the 
equivalent HDL from the C/C++ description; 3) C/RTL co-
simulation, which verifies that both designs work accordingly; 
and 4) HDL exportation. A key feature of Vivado HLS is that 
it allows the use of different directives to optimize the C/C++ 
code in an FPGA-friendly manner during the synthesis step. 
Different directives should be selected in different sections of 
the code, depending on the goal (area, throughput, or latency). 
A summary of the directives used in this work is included in 
Table II. In addition, the original code must sometimes be 
modified to guide the synthesis process and take advantage of 
FPGA characteristics [29]. 

III. RELATED WORK 
Renna et al. [10] presented the first PCG segmentation 

model based on CNN. Specifically, it is an adaptation of U-
Net [9], a model developed for biomedical image 
segmentation. To work with PCGs, the model was modified to 
operate with 1-dimensional signals. A detailed schematic of 
the architecture is presented in Fig. 2. 

Prior to the model analysis, the data must be preprocessed. 
First, each heart sound is band-pass filtered between 25 Hz 
and 400 Hz. The spike removal method described in [6] is 
then applied. The next step is the generation of four different 
envelograms, as in [7], [10]: 

1) Hilbert envelope: extracts the absolute value of the 
Hilbert transform. 

2) Homomorphic envelogram: computed by 
exponentiating the low-pass filtered natural logarithm 
of the Hilbert envelope. 

3) Power Spectral Density (PSD) envelope: calculated 
from the signal spectrogram between 40 and 60 Hz 
with 50 % overlapping windows of 0.05 s width. 

4) Wavelet envelope Computes the Shannon energy of a 
decomposition level after applying a Daubechies 
wavelet 2. 

Finally, the envelograms are downsampled to 50 Hz to 
reduce the computational impact and normalized to have a 
zero mean and unit variance. A visual example of the pre-
processing step is presented in Fig. 3.  

In this way, after preprocessing, a signal with four features 
is obtained: x(t) ∈ ℝ4 for 𝑡𝑡 = 0, … , 𝑇𝑇 − 1, where t indicates 
the time instant, and T is the total time of the PCG. Denoting 
s(t) as the sequence containing the state labels for each time 
instant (s(t) ∈ {1, 2, 3, 4}, where state 1 corresponds to S1, 
state 2 corresponds to the systole interval, state 3 to S2 and 

 
2 In [8] the Daubechies 10 wavelet at decomposition level three was used, 

but in our case, we used Daubechies 1 wavelet at decomposition level 4 as 
done in [30]. 

TABLE II 
HLS DIRECTIVES SUMMARY 

Directive Description 
pipeline Allows concurrency in operations execution 
unroll Creates copies of the loop to allow parallel execution 
dataflow Enables task and operations execution overlapping  
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state 4 to the diastole interval) and given x(t), the 
segmentation model provides an estimation of its 
corresponding state sequence s(t). Patches of fixed length N 
are extracted from x(t) with a specific stride 𝜏𝜏 = 𝑁𝑁/8 to be 
used as the input for the model, which are expressed as 𝐗𝐗(𝑛𝑛) ∈
ℝ𝑁𝑁×4 and obtained as follows: 

𝐗𝐗(𝑛𝑛) = �
𝒙𝒙(𝑛𝑛 · 𝜏𝜏)

⋮
𝒙𝒙(𝑛𝑛 · 𝜏𝜏 + 𝑁𝑁 − 1)�

 , (4) 

for 𝑛𝑛 = 0, … , �
𝑇𝑇 −1−𝑁𝑁

𝜏𝜏 �, where ⌊𝑎𝑎⌋ indicates the greatest 
integer lower than or equal to 𝑎𝑎. 

The first stage of the network consists of four encoding 
blocks, where the signal is compacted in the time dimension 
while the number of channels is increased. This keeps only the 
most relevant information for PCG segmentation and reduces 
the impact of noise. Each encoding block is composed of two 
consecutive 1D-convolutional layers with ReLU activation 
and a max-pooling layer that halves the time dimension. The 
number of filters of the convolutional layers in the first 
encoder is eight, which is doubled in each encoder to increase 
the number of channels. After the encoder part, two 
consecutive 1D-convolutional layers with ReLU activation 
and 128 filters are placed in the architecture section with the 
highest temporal compression. It is then followed by the 
decoding stage, where information is expanded back in the 
time dimension, omitting irrelevant information from the input 
signals. 

In more detail, each decoder has two inputs, the previous 
feature map and a skip connection, allowing  direct 
information transfer from the encoded layers to the decoded 
ones. First, the time dimension is doubled by an up-sampling 
layer followed by a 1D-convolutional with ReLU activation, 
which halves the number of channels. Then, its output is 
concatenated along the channel axis with the skip connection 
originated at the analog encoder block, doubling the channels 
again. Subsequently, two consecutive 1D-convolutional layers 
with ReLU activation are placed to decode the information 
and reduce the number of channels to half of the decoder 
input. The number of filters in each decoder layer is fixed to 
obtain an output with the same shape as their encoder 

counterparts.  
As mentioned earlier, the kernel size of all convolutional 

layers in both the encoder and decoder blocks is fixed at 3. 
Additionally, a stride equal to 1 with padding ‘same’ is used to 
preserve the shape of the feature maps between the layers. 

Finally, there is an extra 1D-convolutional layer with four 
filters and SoftMax activation, which provides the probability 
of being in each fundamental heart state per time instant of the 
input patch n, 𝐘𝐘(𝑛𝑛) ∈ ℝ𝑁𝑁×4. Because the patch size N and 
stride τ for a given time instant t will influence Y(n), 
overlapping patches are used to minimize the influence of 
border data samples. Therefore, the information obtained from 
the patches is combined by averaging the state probabilities 
associated with different Y(n) values. This allows the 

 
Fig. 3. PCG preprocessing example, where four different 
normalized envelopes-envelograms are extracted from the 
normalized PCG. 

 
Fig. 2. Segmentation architecture scheme. The channels are represented in the ordinate axis, the time is on the abscissa axis. N 
is the input window length and n0 is the base number of filters. This representation shows nenc=4 encoders and decoders. For 
visualization purposes, the concatenation of the skip connections is drawn in the time axis, while in fact is done in the channels’ 
axis. The list of studied values for the parameters N, n0, and nenc are also included. 
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computation of 𝒚𝒚(𝑡𝑡) ∈ ℝ4 for 𝑡𝑡 = 0, … , 𝑇𝑇 − 1, which are the 
probabilities of each fundamental heart state at each time 
instant of the input recording. 

The goal of the model is to estimate the sequence of heart 
states s(t). In [10], different temporal modeling solutions were 
evaluated, forcing the output sequence to contain only 
admissible transitions between cardiac cycle states. In this 
work, sequential max temporal modeling is selected owing to 
its simple implementation and low computational complexity, 
providing performance comparable to the other strategies 
studied. First, a coarse estimation of s(t) is obtained as 
follows: 

𝑠𝑠(̃𝑡𝑡) = argmax 𝒚𝒚(𝑡𝑡) . (5) 

Then, the output sequence 𝑠𝑠(̂𝑡𝑡) is forced to contain only 
admissible transitions by setting 𝑠𝑠(̂0) = 𝑠𝑠(̃0) and using the 
rule: 

𝑠𝑠(̂𝑡𝑡) = �
𝑠𝑠(̃𝑡𝑡) if  𝑠𝑠(̃𝑡𝑡) = 𝑠𝑠(̃𝑡𝑡 − 1) mod 4 + 1 

𝑠𝑠(̃𝑡𝑡 − 1) otherwise  , (6) 
for 𝑡𝑡 >  0. 

IV. METHODOLOGY 
There are two main ways to optimize the model 

implementation to achieve real-time performance. One is the 
reduction of the model architecture, which can be enabled 
with model parameterization in the case of hierarchical 
architectural models. The other is during the implementation 
itself, where some paradigms can be followed to optimize the 
model. Fig. 4 shows a summary of these two optimization 
routes, described in the following subsections. The fixed-point 
representation analysis is also included in the diagram as part 
of the optimization, which will be discussed in Section V.  

A. Model reduction strategy 
As mentioned in Section I, one of the advantages of deep 

learning models is their reduction capacity. In this case, the 
original model is already parameterized by N, the input 
window length, which takes values of 64, 128, 256, and 512. 
This enables slight control of the model size in terms of the 
number of operations and feature map memory, which has 
nfm=328·N elements. In contrast, the number of parameters 
remains the same, nw=179,904, because all kernels are 
dependent only on the kernel size and the number of input and 
output filters present in each layer. 

Two more parameters are identified to further control the 
model size: the number of filters used in the first encoder, n0, 
and the number of encoders/decoders, nenc, as illustrated in 
Fig. 2. 

The first one controls the number of filters in all layers 
because it is duplicated at each encoding step and halved at 
each decoding step until the original number of filters is 
recovered. This parameter was initially set to 8, but it is 
reduced to 4 in steps of 1. Note that reducing the filter size 
below 4 is useless, since there are four input features, and the 
output size is 4. The second, the number of encoding/decoding 
stages, is a coarse control of the model. It was originally set to 
4 and, in this work, varies from 4 to 1 in steps of 1. With these 
reductions, the number of weights nw, and the total number of 

elements in the feature maps nfm, are respectively, given by 

 𝑛𝑛w = 3 · 𝑛𝑛0 �
8 + 𝑛𝑛0 �

1 + 11 � 4𝑖𝑖
𝑛𝑛enc−1

𝑖𝑖=0 ��
 , (7) 

   
 𝑛𝑛fm = 𝑁𝑁 · �8 + 𝑛𝑛0(2 + 𝑛𝑛enc(19/2))� . (8) 

Hence, 80 different models are considered (4·N × 5·n0 
× 4·nenc), ranging from the minimal model with nw = 672 
elements and nfm = 3,456 elements to the largest model with 
nw = 179,904 elements and nfm = 167,963 elements. 

B. Implementation optimization strategies 
One of the main reasons for implementing a 

computationally intensive model, such as the U-Net-based 
model, in an FPGA is the capability this technology offers to 
parallelize tasks while enabling the possibility of working with 
arbitrary-length fixed-point data types, which can save 
resources in the final hardware implementation. Because this 
algorithm is aimed at helping physicians in real-time, in this 
case, the latency is considered the main Key Performance 
Indicator (KPI), together with the logic resources usage, which 
are mainly Block Random Access Memory (BRAMs), Digital 
Signal Processing (DSPs) slices, Flip-Flops (FFs), and Look-
Up Tables (LUTs). 

To set a reference, a baseline implementation without any 
optimization strategy is developed. The implementation of the 
Conv1D layer under this paradigm is shown in Algorithm 1, 
where the input and output matrices A and B, respectively, 
have unique memory spaces. As shown in the algorithm, the 
convolution operation is based on nested loops. Thus, one of 
the more potential ways to accelerate this model is to perform 
loop unrolling and pipelining [31], which are the basic 
directives used in any loop optimization process. The first one, 
loop unrolling, is based on the physical implementation of 
more than one loop epoch, enabling a certain parallelization 
level. In HLS, loop unrolling was implemented using the 
unroll directive in the loops that were a bottleneck for the 
model latency. The second one, pipelining, enables concurrent 
execution using the same hardware. For this, the operations 
schedule is tailored to maximize hardware usage and minimize 
latency. The HLS directive employed to pipeline the desired 
section of the code was pipeline. Usually, the usage of these 
directives rapidly scales resource consumption, which makes 
them a poor-quality optimization control.  

Fortunately, in addition to the basic optimization directives, 
other strategies can be followed in HLS to further improve the 
implementation optimization. These strategies are commonly 

 
Fig. 4. Summary of the optimization strategies addressed in 
this study. 
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related to the way the description code is written and/or the 
kind of resources it uses for its synthesis. In this study, two 
different strategies are tested to optimize the U-Net-based 
heart-sound segmentation algorithm: a memory-sharing 
strategy, where there is a common memory space where the 
feature maps are stored, and a streaming dataflow strategy, 
where the feature maps are treated as data streams that flow 
through the network. The former is similar to the optimized 
code that would be implemented on a CPU, whereas the latter 
treats the feature maps as a First-In-First-Out (FIFO) queue, 
which requires a specific way to compute the model layer 
operations. Both implementation strategies are explained in 
detail in the following subsections.  

1) Memory-sharing optimization strategy 
The baseline model implementation, wherein each feature 

map is stored in an independent array, extensively uses othe 
FPGA logical resources. To reduce this usage, only two 
unique arrays are used to store all the different feature maps 
generated by the model. These arrays have the largest size in 
both dimensions (i.e., N × 16 n0, as shown in Fig. 2), so the 
largest  and the smallest feature maps can use the same arrays. 
Thus, optimization directives can be added to reduce latency 
by taking advantage of the saved resources. 

The reason for using two different arrays is to avoid 
conflicts between readings and writings in the same array, 
which would lead to a malfunction of the algorithm because 
previous time instants of the input feature maps are used to 
compute a given time instant of the output feature map. In 
addition, because the model employs skipped connections, the 
feature maps that must be concatenated in the decoding layers 
must be stored in separate arrays. 

The Conv1D implementation under this paradigm is also 
shown in Algorithm 1, although in this case, the input and 

output matrices, A and B respectively, are saved in one of the 
two feature map memory spaces. 

2) Streaming dataflow optimization strategy 
There are two main reasons for testing the streaming 

dataflow optimization strategy. First, with this paradigm, each 
feature map is treated as a FIFO, significantly reducing 
memory usage and access. This is expected to translate into a 
significant latency reduction and logic resource decrease, 
which would allow further optimizations by applying the 
previously mentioned basic optimization directives in more 
sections because more free logic is available in the device. 
Conversely, the code is less optimizable, because the data 
stream can only be accessed once per clock cycle. However, 
pipeline and loop unrolling directives can further optimize the 

Algorithm 2 Streaming dataflow implementation of the 
Conv1D layers 
Inputs: Stream a (in a FIFO buffer), with the values of A∈

ℝ𝑁𝑁m×𝑛𝑛in with priority of the feature dimension; 
Matrix W∈ ℝ𝑁𝑁m×𝑛𝑛in×𝑛𝑛out  (in a dedicated memory 
space). 

Outputs: Stream b (in a FIFO buffer), with the values of B∈
ℝ𝑁𝑁m×𝑛𝑛out  with priority of the feature dimension. 

Initialize scalars: inval, buffval 
Initialize vector with zeros: 𝒂𝒂𝒂𝒂𝒂𝒂 ∈  ℝ𝑛𝑛out  
Initialize matrix: 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁 ∈  ℝ2×𝑛𝑛in 
#(dataflow) 
for all i = −1 to Nm do 

for all j = 0 to nin−1 do  
if i > -1 and i < Nm then 

inval ← a 
else 

inval = 0 
end if  
for all l =0 to 2 do 

if l = 2 then 
buffval = inval 

else 
buffval = 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝑙𝑙,𝑗𝑗  

end if 
for all k = 0 to nout−1  do #(pipeline) 

acck += buffval · 𝐖𝐖𝑙𝑙, 𝑗𝑗, 𝑘𝑘  
if j = nin−1 and l = 2 then 

if i ≥ 1 then 
b ← ReLU(acck) 

end if 
acck = 0 

end if 
end for 
if l > 0 then 

𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝑙𝑙−1,𝑗𝑗 = buffval 
end if 

end for 
end for 

end for 
The pipeline directive is used only in the Conv1D layers of selected encoders and decoders of the 
optimized streaming dataflow implementation. 

 

Algorithm 1 Memory-based implementation of the Conv1D 
layers 
Inputs: Matrix A∈ ℝ𝑁𝑁m×𝑛𝑛in (either in a dedicated or shared 

memory space); Matrix W∈ ℝ𝑁𝑁m×𝑛𝑛in×𝑛𝑛out  (in a 
dedicated memory space). 

Outputs: Matrix B∈ ℝ𝑁𝑁m×𝑛𝑛out  (either in a dedicated or shared 
memory space). 

Initialize scalars: acc, lmin, lmax 
for all k = 0 to nout−1  do 

for all i = 0 to Nm−1  do #(unroll, pipeline) 
lmin = max(0, i–1) 
lmax = min(Nm−1, i+1) 
acc = 0 
for all l = lmin to lmax do 

for all j = 0 to nin do  
acc += 𝐀𝐀𝑙𝑙,𝑗𝑗 · 𝐖𝐖𝑙𝑙−𝑖𝑖+1, 𝑗𝑗, 𝑘𝑘  

end for 
end for 
Bi,k = ReLU(acc) 

end for 
end for 
The unroll and pipeline directives are used only in the Conv1D layers of selected encoders and 
decoders of the optimized memory-sharing implementation. 
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remaining operations performed, such as multiple 
accumulation (MACC) and buffer accesses, can be further 
optimized.  

Second, under this dataflow paradigm, the execution of 
different layers of the model can overlap, that is, before 
finishing the calculations of one layer, the following layer can 
start executing when enough input elements have been 
generated. This is a crucial advantage of this strategy, as it was 
not possible in the memory-based implementation, which 
limits the execution of a given layer after the completion of 
the previous layer. 

As illustrated in Algorithm 2, significant differences exist 
between this implementation and the memory-based ones (i.e., 
the baseline and memory-sharing implementations). The HLS 
Stream Library allows the use of streams, which are the C 
constructs that enable the employment of FIFO with 
configurable depths in this way. Because the convolution 
kernel of the model is 3, the input feature map time instants 
are used up to three times. To enable this under the dataflow 
paradigm, small memory buffers are used to store and reuse 
the samples. 

V. EXPERIMENTS 
In this section, the procedure for performing model training 

and the implementation results is described. First, a subsection 
describing the datasets used in this study and the target FPGA 
is presented. Subsequently, the training process and 
performance metrics are described, and the model 
performance results are reported. Then the results of the HLS 
C simulation of the models with fixed-point data types, their 
synthesis and C/RTL co-simulation results are discussed. 
Next, another subsection analyzes the effect of the fixed-point 
data type on the model performance, latency, and FPGA 
resource consumption. Finally, a comparison with other deep-
learning-based heart sound segmentation models 
implementation is included. 

A. Materials 
1) Datasets 

Two different datasets are used in this study. The first is the 
publicly available data3 from the 2016 Physionet/CinC 
Challenge dataset [22], [23]. It is composed of 792 PCGs from 
135 patients with and without pathologies recorded in clinical 
and non-clinical environments. To identify the ground-truth 
segmentation labels, the dataset also provides the estimated 
positions of the R-peak and end-T-wave points in an 
Electrocardiogram (ECG) recorded simultaneously with the 
PCG [7]. The R-peak and end-T-wave positions corresponded 
to the S1 and S2 states, respectively. 

The second dataset is the public data4 from the CirCor 
DigiScope Phonocardiogram dataset [23], [24], released for 
the 2022 George B. Moody Physionet challenge. It is 
composed of 3163 PCGs from 942 patients with and without 
pathologies recorded during two mass screening campaigns 
 

3 physionet.org/content/hss/1.0/ 
4 physionet.org/content/circor-heart-sound/1.0.3/ 

conducted in the state of Paraíba, Brazil, between July and 
August 2014 and June and July 2015. These recordings have 
noise sources typical of an ambulatory environment, making 
this dataset a representative sample of real-world 
environments in which a PCG diagnostic aid device would be 
used. In this case, segmentation annotations were obtained 
from a semi-supervised scheme. First, the algorithms proposed 
in [7], [8] and the U-Net-based model presented in [10] were 
used to obtain baseline labels, and then, a cardiac pathologist 
inspected their automatic annotations and re-annotated the 
misdetections. Unfortunately, labels were retained only in the 
segments indicated by the expert as a high-quality 
representative; therefore, there may or may not be a 
segmentation annotation at a given time in the recording. 

2) Target FPGA 
The target FPGA to map the U-Net-based model is the 

Xilinx® XC7Z020, which is the Programmable Logic (PL) of 
the Xilinx® ZynqTM 7020 low-end SoC. It includes 85 K 
programmable logic cells, 53.2 K LUTs, 106.4 K FFs, 4.9 Mb 
of BRAM, and 220 DSP slices of 18 × 25 MACC blocks. The 
SoC also includes a Processing System (PS) consisting of a 
dual-core ARM Cortex-A9 with a maximum clock frequency 
of 667 MHz and 512 MB RAM [18]. 

B. Model evaluation methodology 
To properly compare the performance of the models trained 

for this work with previously published results [10], the same 
data partition is performed for both datasets: 10-fold cross-
validation with patient-exclusive splits. To reduce the HLS C 
simulation of the generated models (which is especially time-
consuming), another partition with patient-exclusive splits for 
training (60%), validation (20%), and testing (20%) is also 
performed. The resulting model parameters of this second 
training are used to test the implementation of the HLS tool. 

For both data partition schemes with both datasets, the 
categorical cross-entropy is used as the loss function for the 
Adam optimizer, as done in [10], and the same training 
hyperparameters are used: learning rate of 10−4, batch size of 
1, and 15 epochs. The model weights at the minimum 
validation loss are saved. 

All the training experiments are run with the Keras Python 
package [32] with a Tensorflow 2.8.0 backend over computing 
nodes with 24-core AMD EPYC 7443P CPUs, NVIDIA 
GeForce RTX 3090 GPUs, and 64 GB of RAM. 

1) Performance metrics 
The performance metrics used for both data partition 

schemes include those used in [10]: the recording accuracy 
(AR), defined as the fraction of instants in the entire recording 
output sequence 𝑠𝑠(̂𝑡𝑡) that are correctly assigned to the 
corresponding label in the ground truth sequence 𝑠𝑠(𝑡𝑡), the 
positive predicted value (𝑃𝑃+), and the sensitivity (S), which 
are computed as 

 𝑃𝑃+ =
𝑇𝑇p

𝑇𝑇p + 𝐹𝐹p
 , (9) 
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 𝑆𝑆 =
𝑇𝑇p

𝑇𝑇tot
 , (10) 

where a true positive (𝑇𝑇p) is counted when the center of an S1 
(or S2) sound in the estimated sequence 𝑠𝑠(̂𝑡𝑡) is closer than 
60 ms from the corresponding sound in the ground-truth 
sequence 𝑠𝑠(𝑡𝑡). All others are considered false positives (𝐹𝐹p), 
and 𝑇𝑇tot is defined as the total number of S1 and S2 sounds in 
the ground-truth sequence 𝑠𝑠(𝑡𝑡). 

Another way to compute accuracy is also considered in this 
study. As can be seen from the previous description, the state 
sequence of the entire recording is used to compute the 
recording accuracy AR. This requires a reconstruction step to 
obtain the recording output probabilities 𝒚𝒚(𝑡𝑡) and temporal 
modeling to obtain the estimated sequence 𝑠𝑠(̂𝑡𝑡). This is 
undesirable in the HLS C simulation process, which is time 
consuming. Therefore, we define the global accuracy (AG) as 
the fraction of instants in each output probability patch n, 
𝐘𝐘(𝑛𝑛) ∈ ℝ𝑁𝑁×4 that have been correctly estimated compared 
with the ground-truth one-hot encoding state patch n, 𝐒𝐒(𝑛𝑛) ∈
ℝ𝑁𝑁×4 defined as 

𝐒𝐒(𝑛𝑛) = �
𝒔𝒔(𝑛𝑛 · 𝜏𝜏)

⋮
𝒔𝒔(𝑛𝑛 · 𝜏𝜏 + 𝑁𝑁 − 1)�

 , (11) 

where 𝒔𝒔(𝑡𝑡) is the one-hot encoding version of 𝑠𝑠(𝑡𝑡). 

2) Results 
A comparison of the 10-fold cross-validation results of the 

models with n0 = 8 and nenc = 4 over the 2016 dataset with 
their equivalents from [10] is presented in Table III. As 
shown, a similar performance is achieved in both works, 
although our work reports slightly better results at lower N 
values. This may be related to the differences in random 
sampling of the data partition.  

Fig. 5 shows the distribution of the models resulting from 
each reduction parameters combination in terms of total 
recording accuracy and the number of MACC operations. It is 
remarkable how the N = 64 models rapidly scale in accuracy 
while maintaining a constrained number of operations. Also, it 
can be noticed that slightly better performance is reached for 
higher N values. This is an effect of the reduction of the 
dataset due to the necessity of samples with longer 
segmentation annotations, and thus not an intrinsic 
improvement due to the model architecture. For these reasons, 
only the results of N = 64 models are considered in the 
remainder of the paper, although a complete report is available 
in the GitHub code repository. 

The results of the 10-fold cross-validation of the models for 
the 2016 and 2022 datasets are presented in Table IV. In terms 
of the models’ reduction strategy, it is noticeable the effect of 
the coarse parameter nenc. Its reduction from nenc = 4 to nenc = 3 
barely decreases the model performance, and when it is further 
reduced to nenc = 2, the effect remains contained. At nenc = 1, 
the model is truly limited, showing significant downgrades, 
especially for lower n0 values. Meanwhile, the effect of n0 on 
model performance is smoother than that of nenc. Generally, 
negligible downgrades are observed when n0 is reduced, 

although it becomes relevant at nenc = 1, as previously 
mentioned. 

The results of the training with the second data partition 
scheme, where training, validation, and testing splits are used, 
show the same parameter effects as the cross-validation ones, 
and thus, they are not fully reported. Only the global accuracy 
AG is included, which is contained in the HLS C simulation 
results available in Table V and labeled as floating-point 
accuracy. Note that these results are slightly different from the 
cross-validation results owing to the different ratios between 
the training and testing splits. In this case, it is 60/20, while for 
the cross-validation is 90/10. 

C. HLS C Simulation 
Once the model is validated in the training stage, it is 

manually ported to C++ to enable its implementation through 
Vivado HLS for the inference stage. This tool allows the use 
of arbitrary-length fixed-point data types through the Arbitrary 
Precision Data Type Library. A model represented by lower-
resolution data types is expected to show a downgrade in 
performance compared to the model described in the higher-
level training framework that uses 32-bit floating-point 

TABLE III 
PERFORMANCE COMPARATION OF THE MODELS WITH n0=8 AND 
nenc=4 TRAINED WITH 10-FOLD CROSS-VALIDATION OVER THE 

2016 DATASET WITH THE RENNA ET AL. RESULTS. BEST 
RESULTS FOR BOTH MODELS ON EACH METRIC ARE 

HIGHLIGHTED. 
N AR (%) S (%) P+ (%)  

64 91.5±1.6 91.2±2.3 94.1±2.1 Renna et al. [10] 
92.5±1.4 94.0±2.2 94.4±1.8 This work 

128 92.6±1.6 92.7±2.0 95.6±2.0 Renna et al. [10] 
93.5±1.5 95.2±2.0 95.2±1.9 This work 

256 93.0±1.7 94.3±1.9 95.4±2.0 Renna et al. [10] 
93.8±1.5 95.7±1.9 95.6±2.3 This work 

512 93.7±1.0 95.2±1.2 95.8±1.4 Renna et al. [10] 
93.6±1.3 95.7±1.6 95.8±1.3 This work 

 

 
Fig. 5. Total recording accuracy of each model parameters 
combination for the 10-fold cross-validation trainings over 
the 2016 dataset in function of the number of Multiply-
Accumulate (MACC) operations. The diameter of each point 
represents the number of weights in each model, nw. 
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representation. This is owing to the quantization effect that 
appears when arithmetic operations are performed with lower-
resolution fixed-point data types. To characterize this 
downgrade, the HLS C simulation feature can be used to 
virtualize the model implementation using the selected data 
type. In this stage, a Q8.8 data type is used, that is, eight 
integer bits and eight fractional bits, for a total of 16 bits. 

In addition, the activation function of the last convolutional 
layer, SoftMax, is substituted. This function is beneficial 
during the training stage because it is a smoother version of 
ArgMax, enabling faster training processes. However, because 
it requires exponential operations, it is computationally 
expensive; therefore, for implementation purposes, it is better 
to use ArgMax which can be easily implemented with 
comparators and small memory elements. 

To measure the performance of the models on both datasets, 
HLS C simulations are conducted for each model parameter 
combination on each dataset. Note that the model performance 
is independent of the model implementation, because they are 
all equivalent to the Keras model. Thus, only the HLS C 
simulation results for the baseline implementation are reported 
herein. The results are presented in Table V. It is remarkable 
that the difference between the floating-point and Q8.8 fixed-
point performance is independent of the model parameters N, 
n0 and nenc. The average downgrades in the 2016 dataset are 
0.04 ± 0.13% and 0.01 ± 0.04% for the 2022 dataset. 

D. Synthesis 
This subsection presents the synthesis results obtained after 

applying HLS directives to reduce the model latency and 
memory consumption, as well as some code modifications to 
fully exploit the parallelization capabilities of the FPGA. To 
obtain realistic resource consumption results, the source file 
includes basic interface directives that set the input and output 
interfaces as AXI4-Lite slaves [33], except for the input and 
output streams of the dataflow version, which are set as AXI4 
Stream [34]. 

To properly assess the effect of optimization strategies on 
different combinations of model parameters, the synthesis 
results of the baseline, memory-sharing, and streaming 
dataflow implementations without any optimizations are 
presented in Table VI. Remarkably, the limiting resource in all 
implementations is the BRAM, which is almost or above 
100% for the models with 𝑛𝑛0 ∈ {8, 7} and nenc = 4. Also, it can 
be noticed that this resource has a stepped scaling. This is 
probably due to the instantiation of memory blocks, which 
must have a power-of-two depth. In terms of DSP, it is shown 
that this resource is only dependent on the nenc parameter, and 
the same consumption appears across different 
implementations. This is because of the lack of optimization 
directives, which means that only a single slice is used for 
each Conv1D layer. Finally, the dependence on nenc is also the 
main effect in FF and LUT consumption, although it is 
noticeable that they consume less for n0 = {4, 8}. This may 

TABLE IV 
PERFORMANCE METRICS AVERAGES AND STANDARD DEVIATIONS COMPUTED FROM THE 10-FOLD CROSS VALIDATION 
EVALUATION OF THE N = 64 MODELS FOR BOTH DATASETS. BEST RESULTS FOR BOTH DATASETS IN EACH METRIC ARE 

HIGHLIGHTED. 
  AR (%) AG (%) S (%) P+ (%) 
 nenc   

n0 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 

20
16

 

8 92.5±1.4 92.4±1.4 90.9±1.7 81.2±2.5 91.9±1.5 91.4±1.6 90.0±1.9 83.5±2.1 94.0±2.2 93.7±2.1 91.4±2.4 78.5±3.4 94.4±1.8 94.3±1.7 93.5±2.0 88.4±2.4 
7 92.8±1.3 92.4±1.4 90.8±1.9 81.2±2.6 92.0±1.4 91.5±1.5 90.0±1.8 83.2±2.0 94.2±2.1 93.7±2.2 91.2±2.7 78.7±3.7 94.1±1.8 94.2±1.8 93.5±2.2 88.5±2.8 
6 92.8±1.3 92.5±1.5 90.5±1.8 80.7±2.2 91.9±1.5 91.5±1.6 89.9±1.8 82.7±2.0 94.5±1.9 94.0±2.4 90.9±2.5 78.0±3.1 94.4±1.8 94.1±1.9 93.8±1.6 88.5±2.3 
5 92.8±1.2 92.4±1.3 90.4±1.8 78.7±2.4 91.7±1.5 91.3±1.6 89.4±1.9 81.8±2.0 94.5±1.8 93.8±2.2 90.9±2.6 75.5±3.8 94.4±1.6 94.2±2.0 93.3±2.0 87.7±2.6 
4 92.5±1.4 92.1±1.5 90.1±1.8 77.6±3.6 91.6±1.5 91.1±1.6 88.9±1.8 80.6±2.3 94.1±2.2 93.3±2.4 90.5±2.7 73.9±5.0 94.4±1.8 94.1±2.0 92.8±1.8 86.5±2.9 

20
22

 

8 90.2±0.8 90.1±0.9 89.1±0.9 84.6±0.9 90.1±0.8 90.0±0.9 88.9±0.9 84.7±0.9 96.0±1.0 95.9±1.0 94.2±1.1 87.8±1.0 96.0±0.8 96.1±0.9 95.4±1.0 93.2±0.9 
7 90.2±0.9 90.0±0.9 89.0±0.9 84.1±0.9 90.1±0.9 89.9±0.9 88.8±0.9 84.3±0.9 96.1±1.1 95.7±1.1 94.0±1.0 87.1±1.0 96.1±0.9 95.9±1.0 95.4±0.9 92.8±0.8 
6 90.3±0.9 90.0±0.9 88.8±0.9 84.0±0.9 90.1±0.8 89.8±0.8 88.7±0.8 84.0±0.9 96.2±1.0 95.8±1.0 93.9±1.0 87.1±1.0 96.1±0.8 96.0±0.9 95.3±0.9 92.8±0.9 
5 90.2±0.9 89.9±0.9 88.6±1.0 82.7±1.2 90.0±0.8 89.7±0.9 88.4±0.9 83.1±1.0 96.1±1.0 95.6±1.0 93.6±1.2 85.5±1.5 96.0±0.9 95.8±0.9 95.2±0.8 92.3±1.0 
4 90.0±0.9 89.8±0.9 88.1±1.0 81.9±1.0 89.7±0.9 89.5±0.8 87.9±0.9 82.2±0.9 95.9±1.0 95.5±1.0 93.0±1.2 84.5±1.2 95.9±1.0 95.8±1.0 95.0±0.9 91.8±1.3 

TABLE V 
GLOBAL ACCURACY OF THE N = 64 MODELS FROM THE DEFINITIVE TRAININGS USING FLOATING-POINT AND Q8.8 FIXED-POINT 

REPRESENTATIONS AND THEIR DIFFERENCES FOR THE BOTH DATASETS. BEST RESULTS FOR BOTH DATATYPES ARE HIGHLIGHTED 
FOR BOTH MODELS. 

  GPU Inference - Floating-point accuracy (%) FPGA inference - Q8.8 fixed-point accuracy (%) Difference (%) 
 nenc   

n0 4 3 2 1 4 3 2 1 4 3 2 1 

20
16

 

8 90.55 89.50 88.10 82.16 90.51 89.47 88.09 82.09 0.04 0.03 0.00 0.07 
7 91.01 89.25 87.92 81.66 90.95 89.26 87.95 81.63 0.06 -0.02 -0.03 0.03 
6 90.07 89.32 88.30 81.46 90.08 89.37 88.27 81.46 -0.02 -0.05 0.03 -0.01 
5 89.78 89.17 87.62 79.71 89.74 89.15 87.65 79.77 0.04 0.02 -0.03 -0.06 
4 90.28 89.84 86.45 78.62 90.30 89.78 86.47 78.71 -0.02 0.05 -0.03 -0.09 

20
22

 

8 91.16 90.73 89.64 85.76 91.14 90.72 89.66 85.73 0.02 0.01 -0.03 0.03 
7 91.09 90.62 89.88 84.92 91.11 90.62 89.89 84.85 -0.02 0.01 -0.01 0.07 
6 91.10 90.59 89.39 84.85 91.10 90.58 89.42 84.82 0.01 0.01 -0.03 0.02 
5 90.58 90.35 89.26 84.33 90.39 90.41 89.26 84.29 0.19 -0.05 0.00 0.04 
4 90.64 90.32 88.92 83.09 90.64 90.26 88.90 83.07 0.00 0.06 0.02 0.02 
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also be related to memory organization in power-of-two 
blocks, where memory accesses are inherently optimized. 
Additionally, in memory-based implementations, LUTs also 
have a slim dependence on N.  

However, latency is affected by all model parameters. For 
memory-based implementations, it scales linearly with N, and 
in the streamed implementation is slightly lower. In the case of 
the n0 and nenc parameters, the latency decreased rapidly. 
Overall, these dependencies enable an extensive range of 
latency values, as indicated in the complete results. In the case 
of memory-based implementations, the highest measured 
latency is 406.39 ms, while the lowest is 1.26 ms. For the 
streamed implementation, this range is more constrained, from 
100.62 ms down to 0.42 ms. This is due to the remarkable 
latency reduction this implementation strategy presents 
compared with the memory-based implementations, which 
achieves an average latency decrease factor of 3.71 ± 0.61, 
with a minimum of 2.69 and a maximum of 4.81.  

To better characterize the maximum potential of each 
implementation strategy, the N = 64, n0 = 8, and nenc = 4 

models are implemented with the maximum optimization 
available, using both strategies. The procedure followed in 
each paradigm is presented in the following subsections, and 
the FPGA resource consumption, latency and power 
consumption results are presented in Table VII. The power 
consumption results are estimated by the Vivado tool. 

1) Memory-sharing implementation optimization 
Using HLS to reduce model latency in the memory-sharing 

paradigm, optimizations based on the aforementioned 
directives are performed from the central part of the network 
(the one that requires more clock cycles) to the borders until 
the model implementation reaches the maximum logic 
resources available in the FPGA. As labeled in Algorithm  1, 
loop unrolling (unroll) and pipelining (pipeline) directives are 
included in the second outer loop of the Conv1D layers (i 
loop) of the last encoder, central part, and two first decoders. 
This shows the best results after loop-by-loop and layer-by-
layer exhaustive analyses. Other optimization paths have also 
been explored: loop unrolling and pipelining in the max-
pooling and up-sampling layers, ArgMax and ReLU activation 
functions, and feature map array partitions. None of these 
modifications led to significant improvements in latency. 
These optimizations reduced the model latency by 
approximately 8% during the synthesis. 

Including these directives has led to a significant increase in 
FPGA resources consumption, resulting in a 36% increase in 
total power consumption. 

2) Streaming dataflow implementation optimization 
As expected, under the streaming dataflow paradigm using 

the HLS Stream Library under the dataflow directive, the 
latency decreases significantly while resource consumption 
remains similar to the baseline implementation values. As in 
the memory-sharing implementation, the limiting layers are 
the central part and its nearest neighbors. In this case, this 
effect is so relevant that the latency of the second central 
Conv1D layer is 99.99% of the total latency, followed by the 
two next Conv1D layers, from the first decoder, both with a 

TABLE VII 
SYNTHESIS, C/RTL CO-SIMULATION AND POWER 

CONSUMPTION RESULTS OF THE N = 64, n0 = 8 AND nenc = 4 
MODEL USING Q8.8 FIXED-POINT DATA TYPES FOR DIFFERENT 

IMPLEMENTATIONS. THE LOWEST CONSUMPTIONS AND 
LATENCIES ARE HIGHLIGHTED. 

  Implementation 
  Non-optimized 

baseline 
Optimized 

memory-sharing 
Optimized 
streaming 

BRAM (%) 103 97 99 
DSP (%) 10 56 10 
FF (%) 8 17 10 

LUT (%) 33 93 44 
Synthesis 

Latency (ms) 
Best 50.78 65.91 5.97 

Worst 75.98 70.09 5.97 
Cosimulation 
Latency (ms) 

Best 82.12 82.05 29.27 
Worst 82.16 82.10 29.27 

Power 
consumption 

(mW) 

Dynamic 673 964 558 
Static 169 180 163 
Total 842 1144 722 

Energy per inference (mJ) 69 94 21 
 

TABLE VI 
SYNTHESIS RESULTS OF THE DIFFERENT IMPLEMENTATIONS WITHOUT OPTIMIZATIONS OF THE N = 64 MODELS USING Q8.8 FIXED-

POINT DATA TYPES. RESOURCES CONSUMPTIONS OVER THE AVAILABLE IN THE XC7Z2020 ARE MARKED IN RED. 
  BRAM (%) DSP (%) FF (%) LUT (%) Best Latency (ms) Worst Latency (ms) 
 nenc   

n0 
4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 

Pr
el

im
in

ar
y 8 103 37 18 11 10 8 6 4 8 6 4 3 33 26 19 12 50.78 24.37 11.07 4.33 75.98 36.41 16.50 6.43 

7 103 37 18 11 10 8 6 4 9 7 5 3 38 30 22 13 46.17 21.91 9.70 3.51 69.08 32.73 14.46 5.22 
6 63 28 18 11 10 8 6 4 9 7 5 3 38 30 22 13 34.05 16.21 7.22 2.65 50.93 24.20 10.75 3.93 
5 63 28 18 11 10 8 6 4 9 7 5 3 38 30 22 13 23.65 11.24 4.98 1.85 35.35 16.77 7.40 2.74 
4 43 25 18 11 10 8 6 4 8 6 4 3 33 26 19 12 13.01 6.36 2.99 1.26 19.42 9.46 4.43 1.85 

M
em

or
y 

Sh
ar

in
g 

8 97 31 14 8 10 8 6 4 7 6 4 3 32 26 19 12 50.78 24.37 11.07 4.33 75.98 36.41 16.50 6.43 
7 97 31 14 8 10 8 6 4 9 7 5 3 40 31 22 14 46.17 21.91 9.70 3.51 69.08 32.73 14.46 5.22 
6 57 23 13 8 10 8 6 4 9 7 5 3 39 31 22 14 34.05 16.21 7.22 2.65 50.93 24.20 10.75 3.93 
5 57 23 13 8 10 8 6 4 9 7 5 3 39 30 22 13 23.65 11.24 4.98 1.85 35.35 16.77 7.40 2.74 
4 35 18 12 8 10 8 6 4 7 6 4 3 32 25 19 12 13.01 6.36 2.99 1.26 19.42 9.46 4.43 1.85 

St
re

am
ed

 8 98 31 12 6 10 8 6 4 8 6 5 3 39 30 22 13 17.76 7.43 3.37 1.61 20.71 8.65 3.92 1.87 
7 94 28 11 6 10 8 6 4 8 6 5 3 40 31 22 14 13.60 5.69 2.58 1.24 15.86 6.63 3.01 1.44 
6 54 19 10 6 10 8 6 4 8 6 5 3 40 31 22 14 10.00 4.19 1.90 0.92 11.66 4.88 2.21 1.06 
5 54 19 10 6 10 8 6 4 8 6 5 3 40 31 22 13 6.95 2.91 1.33 0.65 8.10 3.39 1.54 0.75 
4 35 16 10 6 10 8 6 4 8 6 4 3 38 30 22 13 4.46 1.87 0.85 0.42 5.19 2.18 0.99 0.49 
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latency of 83.61% of the total.  

Therefore, the optimization of Conv1D layer is based on the 
usage of the pipeline directive, which inclusion in the 
innermost loop (k loop in Algorithm 2) significantly decreases 
the latency of the layer by allowing the overlapped operation 
of different sections of the code. With this directive, the 
latency of the second Conv1D layer of the central part 
decreases by a factor of three, ceasing to be the layer with 
largest latency. Given this, the model can be further optimized 
by using the pipeline directive in the innermost loops of the 
Conv1D layers with more latency than the already pipelined 
Conv1D of the central part. These layers are the other layer in 
the central part, the layers of the last encoder and those in the 
first two decoders. With these directives, the model latency is 
newly limited by the second Conv1D layer of the central part, 
making the model three times faster with a reduction of 3.9% 
of BRAM, which is the critical resource of this design.  

Thanks to this reduction in BRAM consumption and the 
constrained increase in other resources, the total power 
consumption of this implementation is 14% lower than the 
baseline. 

E. C/RTL co-simulation 
To verify that the RTL design generated by the HLS tool 

works according to the C description, C/RTL co-simulation 
analysis are assessed. In addition, this provides more realistic 
latency values than those estimated during the synthesis stage. 
Because this process is time consuming, only the baseline and 
optimized memory-sharing and streaming dataflow 
implementations of the N = 64, n0 = 8, and nenc = 4 models are 
launched. The results are listed in Table VII. As shown, there 
is an increase in the co-simulation latency compared with the 
synthesis results. This is mainly because during synthesis, 
model interfaces are not considered for latency computation. 
Furthermore, Vivado HLS does not correctly compute the 
latency of dataflow systems during synthesis, which explains 
the larger increase in the co-simulation latency of the stream 
implementation. Nevertheless, an overall decrease in latency 

of 64% is achieved when the baseline and the optimized 
streaming dataflow implementations are compared. 

Considering that the batch size (i.e., the number of samples 
the model evaluates per inference) was set to 1, the co-
simulation latency directly results in the model latency. In the 
optimized streaming implementation, the model takes 
2,926,713 cycles to process a sample at a clock frequency of 
100 MHz, which means an inference time of 29 ms. The 
model input is a window of 64 samples sampled at 50 Hz, i.e a 
signal of 1.28 s duration. Hence, a 29 ms processing time can 
be considered as real time with a significant margin for this 
task. 

F. Low-resolution fixed-point datatype effects 
Finally, different low-resolution fixed-point data types 

between 16 and 8 bits have been considered for both HLS C 
simulation and synthesis. To simplify this analysis, the model 
parameters are set as N = 64, n0 = 8, and nenc = 4. The results 
are shown in Fig. 6, where the data types are sorted according 
to the global accuracy drop. Generally, in terms of resource 
consumption, slight reductions appear when the number of bits 
of the data type is reduced. Only at 8-bit representations, the 
BRAM drops significantly. This is due to the Vivado HLS 
packing method for the elements of the input AXI Lite 
interfaces, which forces them to use the nearest greater power-
of-two bits. Therefore, the 14-, 12-, and 10-bit data types use 
the same BRAM as the 16-bit data type, which is the most 
significant usage. In addition, the global accuracy drop 
(compared with the floating-point performance) is affected by 
the combination of two effects: quantization, which is more 
significant when the number of fractional bits is low, and 
overflow, which appears when the number of integer bits is 
low. If an accuracy drop of less than 0.2% is considered 
acceptable, at least six bits are required for the decimal part to 
reduce the accuracy drop due to quantization. In the case of 
overflow, the integer part must have at least six bits; 
otherwise, the accuracy drop starts to increase owing to this 
effect. 

  
Fig. 6. BRAM, FF and LUT consumption in each implementation paradigm and global accuracy (AG) drop (respect to the 
floating-point performance) over the 2022 dataset for each tested fixed-point data type. 
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G. Comparison with other implementations 
Table VIII shows a comparison between the optimized 

streaming implementation of the U-Net-based heart sound 
segmentation algorithm and other existing implementations of 
heart sound segmentation algorithms using deep learning. It is 
worth noticing that, to the best of our knowledge, all other 
existing implementations found in the literature are based on 
CNNs. Additionally, as far as we know, this work is the only 
one that has been implemented on an FPGA, while the other 
two reported works have deployed on a CPU. This platform 
diversity limits the fairness of the comparison. Nonetheless, it 
shows the state-of-the-art in this field, setting the basis for 
further research to improve accuracy, reduce inference times 
or lower the power consumption. Firstly, the clock frequency 
of this implementation is 4.8 times lower than the one 
employed in [20] and 15 times lower than in [21]. This, 
together with the fact that FPGAs are less power demanding 
than CPUs would expectedly imply a significant decrease in 
the power consumption of this implementation compared to 
the other two. However, because only this work has reported a 
power consumption estimation, a comparative study was not 
possible. All works have used a CNN to perform the 
segmentation, differing in their architecture. Kwiatkowski et 
al. [20] used three convolutional layers with intercalated max-
pooling and batch-normalization layers, and Vakamullu et al. 
[21] implemented just two convolutional layers followed by 
max-pooling layers. Our model has 23 convolutional layers, 
and uses the U-Net architecture, with encoding and decoding 
stages. Given this, it is clear that our model has significantly 
more complex than the other two. For this reason, the 
classification results reported in this work achieved a more 
accurate segmentation considering the four heart sound 
components of a PCG, whereas [20] distinguished between S1, 
S2 and the rest of the signal, and [21] limited the model to 
only systole and diastole detection. Note that the three models 

have been trained with different datasets, so performance may 
depend on this factor. Finally, [20] reported a lower model 
inference time than this work. However, this could be related 
to the fact that they used a significantly smaller model with 
only three convolutional layers, halving the number of bits 
used in their implementation (8-bit representation against 16-
bit), and they used 4.8 times the frequency employed in this 
work. Thus, equivalent or even lower inference times could be 
achieved by porting this design to an FPGA with a higher 
clock frequency. The work presented in [21] did not report any 
inference times for their implementation.  

VI. DISCUSSION AND CONCLUSIONS 
To the best of our knowledge, this work presents for the 

first time an exhaustive optimization study of the U-Net-based 
heart sound segmentation algorithm, which is the current state-
of-the-art in this field, being tested in both the 2016 
Physionet/CinC Challenge dataset and the CirCor DigiScope 
Phonocardiogram dataset. To enable its implementation in an 
FPGA, an HLS tool was used to achieve significant 
improvements in terms of latency and logical resource usage, 
which allow its implementation on a low-end FPGA with real-
time performance. As far as we know, there are not previously 
reported works that contain an implementation on this 
platform for heart-sound segmentation. The main result of this 
work is the reduction in inference time achieved by the 
optimized streaming implementation, compared to the baseline 
version. The co-simulation results showed that it was reduced 
from 82.12 to 29.27 ms, which is a 64% reduction of the 
original inference time. Additionally, the use of BRAM, the 
limiting FPGA resource, was also reduced by 3.9% in the 
optimized streaming implementation, which reported 99% 
BRAM usage, compared to the 103% in the baseline. These 
two results have led to a significant 70% reduction in energy 
per inference, which was 69 mJ in the baseline and 21 mJ in 
the optimized streaming implementation. To achieve this, 
different optimizations have been evaluated. 

Firstly, the fact that hierarchical deep learning models can 
be easily reduced was considered. This had a direct impact on 
the number of MACC operations and, thus, on FPGA resource 
consumption. Two additional reduction parameters were 
identified in this study, proving that FPGA resource 
consumption can decrease significantly while maintaining 
segmentation model performance.  

Secondly, two different implementation optimization 
strategies were tested: a memory-sharing paradigm and a 
streaming dataflow paradigm. Both strategies showed 
improvements in FPGA resource consumption and execution 
latency compared with the baseline implementation. Between 
them, this study demonstrates that the streaming dataflow 
implementation strategy obtains significantly better results 
than memory-based implementations because it treats the 
feature maps as a flow using FIFO queues, enabling the 
overlapping execution of consecutive layers. This drastically 
reduces the latency compared with memory-based approaches 
but requires a redesign of the description code. 

In addition, both implementation paradigms were optimized 
with high-level directives, which were included in the 
bottlenecks of the designs. This reduction in latency came at 

TABLE VIII 
COMPARISON BETWEEN THIS WORK AND OTHER HARDWARE 

IMPLEMENTATION OF DEEP LEARNING -BASED MODEL FOR 
HEART SOUND SEGMENTATION. 

 Kwiatkowski et 
al. [20] 

Vakamullu et al. 
[21] This work 

Hardware 
(freq.) 

ARM Cortex-
M7 CPU 

(480 MHz) 

Rasp. Pi 3B ARM 
Cortex-A53 CPU 

(1.5 GHz) 

Xilinx Zynq 7020 
FPGA 

(100 MHz) 
#Classes 3 2 4 

Datatype 8-bit integer 32-bit float Q8.8 
(16-bit) 

Dataset 
Physionet/CinC 
Challenge [22], 

[23] 

HS Challenge 2011 
[35], Littman 
Library [36], 

Michigan HS [37] 
and 8 volunteers 

Physionet/CinC 
Challenge [22], [23] 

and CirCor DigiScope 
Phonocardiogram 

[23], [24] 
#PCG-#Subjects 792-135 - (792, 3163)-(135, 942) 

Model Tiny CNN  2-layers CNN U-Net-based (CNN) 
#Conv. Layers 3 2 23 

Acc. (%) 89.84 87.78 90.51 
Inference time 

(ms) 12 - 29 

Power 
consumption 

(mW) 
- - 722 
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the cost of increased FPGA resource consumption, with the 
BRAM close to 100% for both optimized implementations. If 
a larger model with better accuracy is released in the future, its 
implementation would require either a reduction of the FPGA 
consumption at the expense of latency (fewer optimization 
directives) or the use of larger FPGAs, which would increase 
the cost of the system and its power consumption. 

Through the development of the model optimization, some 
limitations of the Vivado HLS tool were identified. For 
example, HLS might not consider the AXI interfaces declared 
at a high level to compute the latency, and the latency derived 
from the streaming dataflow strategy at synthesis is not 
reproduced in the C/RTL co-simulation, but it is still 
significantly better than the memory-shared alternative. 
Hence, even though this tool boosts the hardware design and 
has been useful in significantly accelerating this model, 
manual fine-tuning of the generated HDL might be necessary 
to optimize this design completely. 

As mentioned in Section I, few studies have implemented 
deep learning models to segment PCGs, and they have used 
small-sized architectures. Thus, to the best of our knowledge, 
this work is the first to exhaustively study different 
optimization strategies for implementing a large 1D U-Net-
based model with an estimated inference time of 29 ms using a 
16-bit fixed-point representation. Considering that the length 
of the input window for these models was N = 64 and the 
sampling frequency was 50 Hz, a real-time response required 
less than N/50 ≈ 1.28 s. Hence, it is feasible to implement this 
model in a computer-aided decision system to automatically 
identify the heart states in a PCG and potentially help 
physicians identify abnormalities in the patient’s heart 
recordings with more complex analysis algorithms. The 
comparison with the state-of-the-art hardware 
implementations of similar algorithms evidenced the impact 
that the hardware optimization of this model had in the final 
results, outperforming them in accuracy and achieving real-
time performance with significantly lower clock frequency. 
This is related to lower power consumption, thus being a more 
suitable solution for a low-cost and low-power computer-aid 
system. 

Finally, note that this is also reproducible for any U-Net-
based architecture, including the different model reduction 
parameters and the two tested implementation optimization 
strategies, which have been proven to accelerate the model in 
a low-end FPGA.  

In future works, to obtain a functional heart-sound 
segmentation device attached to the stethoscope for a real-time 
processing of the PCG, the preprocessing stage should also be 
optimized and implemented on the same hardware platform. 
To achieve this, an analogue-to-digital converter should be 
introduced in the design without compromising the temporal 
restrictions. Since the estimated inference time of the 
segmentation part is 29 ms, there is a feasible temporal margin 
of more than 1.2 s to read and preprocess the data obtained by 
the sensor. Then, it is intended to perform an online evaluation 
of the physical platform, thus validating the prototype of a 
hand-held device capable of automatically detecting cardiac 
abnormalities from a PCG at an early stage.  
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