
1
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Low-Cost FPGA Implementation of Deep Learning-
based Heart Sound Segmentation for Real-Time

CVDs Screening

Daniel Enériz, Graduate Student Member, IEEE, Antonio J. Rodriguez-Almeida, Himar Fabelo, Samuel Ortega,
Francisco J. Balea-Fernandez, Gustavo M. Callico, Senior Member, IEEE, Nicolás Medrano, Senior Member, IEEE

and Belén Calvo, Senior Member, IEEE

Abstract— The development of real-time, reliable, low-cost

automatic Phonocardiogram (PCG) analysis systems is critical
for early detection of Cardiovascular Diseases (CVDs), especially
in countries with limited access to primary health care programs.
Once the raw PCG acquired by the stethoscope has been
preprocessed, the first key task is its segmentation into the
fundamental heart sounds. For this purpose, an optimized
hardware implementation of the segmentation algorithm is
essential to attain a computer-aided diagnostic system based on
PCGs. This paper presents the optimization of a U-Net-based
segmentation algorithm for its implementation in a low-end
Field-Programmable Gate Array (FPGA) using low-resolution
fixed-point data types. The optimization strategies seek to reduce
the system latency while maintaining a constrained consumption
of FPGA resources, aiming for a real-time response from the
stethoscope data acquisition to the CVDs detection. Experimental
results prove a 64% decrease in latency compared to a baseline
version, a 3.9% reduction of Block Random Access Memory,
which is the limiting resource of the design, and a 70% reduction
in energy consumption. To the best of our knowledge, this is the
first work to exhaustively study different optimization strategies
for implementing a large 1D U-Net-based model, achieving real-
time fully characterized performance.
Index Terms— Convolutional neural networks, computer-aid
diagnostic, cardiovascular diseases detection, deep learning, edge
AI, embedded systems, FPGA, heart sound segmentation

This work has been supported by PID2019-106570RB-

I00/AEI/10.13039/501100011033/ FEDER, UE, PID2022-138785OB-
I00/AEI/10.13039/501100011033/ FEDER, UE, and PID2020-116417RB-
C42/AEI/10.13039/501100011033/ FEDER, UE projects. This work was
completed while D.E. was beneficiary of PhD grant BOA20201210014 by the
“Gobierno de Aragón”, A.J.R.-A. was beneficiary of a pre-doctoral fellowship
by the “Agencia Canaria de Investigación, Innovación y Sociedad de la
Información (ACIISI)” of the “Consejería de Economía, Conocimiento y
Empleo” of the “Gobierno de Canarias”, which is part-financed by the
European Social Fund (FSE) (POC 2014-2020, Eje 3 Tema Prioritario 74
(85%)) and, H.F. was beneficiary of the FJC2020-043474-I funded by
MCIN/AEI/10.13039/501100011033 and by the European Union
“NextGenerationEU/PRTR”. (D.E. and A.J.R.-A. are co-first authors)
(Corresponding author: Nicolás Medrano).

D.E., N.M. and B.C. are with the Aragon Institute of Engineering Research,
University of Zaragoza, Spain (email: {eneriz, nmedrano, becalvo}@unizar.es).
A.J.R.-A., H.F., S.O., G.M.C. and F.J.B.-F. are with the Research Institute for
Applied Microelectronics, University of Las Palmas de G.C., Spain (e-mail:
{aralmeida, hfabelo, sortega, gustavo}@iuma.ulpgc.es; fbalea@cop.es;). S.O.
is also with Norwegian Institute of Food, Fisheries and Aquaculture Research,
Norway. H.F. is also with Fundación Canaria Instituto de Investigación
Sanitaria de Canarias, Spain. F.J.B.-F.is also with Dept. of Psychology,
Sociology and Social Work, University of Las Palmas de Gran Canaria, Spain.

I. INTRODUCTION
N 2019, 17.9 million people died due to Cardiovascular
Diseases (CVDs), the leading cause of death, with 32% of
deaths worldwide [1]. More than three-quarters of these

CVD deaths occurred in low- and middle-income countries,
where people with risk factors often do not have access to
primary health programs for early detection and treatment.
Moreover, cardiac auscultation performed by a medical doctor
using a stethoscope, which is the fundamental method for
CVD screening, is challenging to learn, resulting in only 20%
of cardiac events being detected by internal medicine and
family practice residents [2]. These two factors have
motivated the development of automatic Phonocardiogram
(PCG) analysis in recent years [3], [4], as a computer-aided
decision system based on auscultation would lead to improved
accuracy and shorter diagnostic times, thus facilitating the
referral of patients to cardiology doctors. Therefore, a system
such as a processing unit that automatically analyses the PCG
in real-time attached to the traditional stethoscope can be a
feasible solution to provide a more efficient CVD screening
process.

PCGs are recordings of the heart sounds made during its
mechanical and physiological activity, resulting from the
opening and closure of the cardiac valves. As drawn in Fig. 1,
two main sounds, S1 and S2, are produced when the
atrioventricular and the semilunar valves close, respectively.

I

Fig. 1. Illustrative example of a PCG signal, where the
fundamental sounds S1 and S2 and the systole (Sys) and
diastole (Dias) intervals are labeled. The limits of each
cardiac cycle are also marked with vertical lines.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3392271

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

These sounds define the duration of the cardiac cycle, which is
divided into two periods: systole and diastole. Apart from the
fundamental sounds (S1 and S2), additional sounds can appear
in the PCGs. These sounds are often related to cardiac murmurs,
possibly associated with CVDs. Recognizing and describing
these murmurs in a first screening is crucial to decide whether a
patient must be referred to a cardiologist [5]. Please note that
Fig. 1 shows an illustrative example. In medical practice, PCG
signals are mixed with different noise sources such as the
patient’s breathing, skin contact with the stethoscope,
background conversations, etc.

In recent years, several studies have addressed different tasks
in the heart-sound analysis field by employing a wide variety of
algorithms. One of the most basic tasks is the segmentation of
the PCG, that is, the recognition of its fundamental components:
S1, systole interval, S2, and diastole interval, as shown in Fig. 1.
In [6], a segmentation algorithm based on a Duration-
Dependent Hidden Markov Model (DHMM) was presented,
first introducing an explicit model of heart-sound time duration.
Based on this work, another Hidden Semi-Markov Model
(HSMM) was introduced in [7], which uses logistic regression
in the model probabilities and additional input features,
achieving significant improvements. An additional logistic
regression segmentation algorithm based on the HSMM was
presented in [8], which uses adaptive sojourn time parameters.

Finally, inspired by the success of U-Net [9] in image
segmentation, the work presented in [10] introduces the use of
Convolutional Neural Networks (CNN) for heart-sound
segmentation. The analysis of performance included in [10],
showed that the U-Net-based model outperformed the existing
reference algorithms to date ([6], [7], [8]), establishing the
current state-of-the-art in this field. A summary of this analysis
comparing the algorithms in [6], [7], [10] is available in Table I,
where the U-Net-based model outperforms in three different
metrics. The adaptive sojourn temporal modeling described in
[8] is also evaluated in [10], with slight improvements in
sensitivity. For these reasons, the U-Net-based model described
in [10] was the one selected to be implemented in this work.

A critical aspect that must be considered when developing an
automatic PCG analyzer is the hardware running the algorithm
and its time response. Because computer-aided diagnostic
systems must be real-time responsive, an optimized algorithm
implementation is required, especially in computationally
intensive solutions, such as machine and deep learning models.
Moreover, owing to the substantial impact of CVDs in low- and
middle-income countries, it is desirable to have a low-cost and
Internet-independent system suitable for use in areas where the
main resources are not regularly available. Additionally, as
clinical data are sensitive, their privacy must be ensured,
making their processing undesirable in third-party datacenters
such as Big Tech cloud services. For these reasons, an edge-
computing solution is the best option, because this choice
entails single device acquiring and processing the data.

Four leading hardware platforms are widely used to
implement algorithms: Central Processing Units (CPUs),
Graphic Processing Units (GPUs), Field-Programmable Gate

Arrays (FPGAs), and Application-Specific Integrated Circuits
(ASICs). Heterogeneous systems are also emerging by
combining previous platforms.

CPUs are the most general-purpose approach, but with very
limited parallelization capability, whereas ASICs are specific
solutions that can provide full parallelization. GPUs and FPGAs
lie in between, both are general-purpose and highly
parallelizable, but their nature differs in terms of flexibility and
adaptability. GPUs are particularly well-suited for parallel
processing tasks, making them ideal for graphics rendering and
batch training of deep learning models, but often with high
energy consumption. Their development methodology is
straightforward thanks to the extended support of libraries such
as CUDA and OpenCL [11], [12].

On the other hand, FPGAs offer a unique advantage with
their reconfigurable hardware, allowing for custom hardware
acceleration tailored to specific algorithms and unlocking great
optimization capabilities. While GPUs excel at tasks with high
data parallelism, FPGAs offer a more flexible and adaptable
solution while supporting high parallelization capabilities,
making them suitable for a wider range of applications,
especially those requiring low-latency and power efficiency,
such as a real-time CVDs screening device requires.

The drawback of using FPGAs is the development
methodology, as they require the hardware description to be
implemented. Fortunately, there are High-Level Synthesis
(HLS) tools that enable FPGA programming from an
algorithmic description, thus shortening the implementation
time close to its GPU counterpart while maintaining a high-
level of control over the synthesized design. Moreover, the
possibility of using fixed-point data types of arbitrary lengths in
HLS allows further optimization of the algorithms by lowering
the resolution of the data types below 16 bits. The
implementation of custom hardware for optimized inference of
machine and deep learning models in FPGAs has become
popular in recent years [13], [14], [15], [16], [17], thanks to the
advance in HLS tools, opening up the possibility of using low-
cost FPGAs as target platforms to implement artificial

TABLE I
PERFORMANCE COMPARISON WITH SEGMENTATION
ALGORITHMS PROPOSED IN THE LITERATURE. DATA

EXTRACTED FROM [10], TABLE I.
N AR (%) S (%) P+ (%)

64
82.5±2.8 83.3±3.5 87.3±3.1 Schmidt et al. [6]
86.0±2.5 87.9±3.2 90.8±2.7 Springer et al. [7]
91.5±1.6 91.2±2.3 94.1±2.1 Renna et al. [10]

128
84.5±2.8 87.1±3.7 89.7±3.8 Schmidt et al. [6]
87.2±2.1 89.8±3.2 92.1±2.8 Springer et al. [7]
92.6±1.6 92.7±2.0 95.6±2.0 Renna et al. [10]

256
85.4±3.4 89.4±4.6 91.1±3.8 Schmidt et al. [6]
88.1±2.4 91.6±3.2 93.2±2.7 Springer et al. [7]
93.0±1.7 94.3±1.9 95.4±2.0 Renna et al. [10]

512
87.4±2.6 92.7±3.1 93.3±2.8 Schmidt et al. [6]
89.8±1.2 94.3±1.8 94.8±1.8 Springer et al. [7]
93.7±1.0 95.2±1.2 95.8±1.4 Renna et al. [10]

The description of N is available in Section III. Symbols AR, S, and P+ stand for recording
accuracy, sensitivity and positive predicted value, respectively, and are described in
Section V B 1.
The results of Renna et al. [10] shown here use the sequential max temporal modelling,
which is the temporal modelling used in this work.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3392271

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

intelligence models. Finally, the heterogeneous platforms, such
as the Xilinx® ZynqTM 7000 series [18], allow the distribution of
the computational workload between the CPU and FPGA
during prototyping periods. This unique characteristic enhances
flexibility by allowing developers to fine-tune the allocation of
processing tasks based on their nature and complexity. For
example, the Xilinx® ZynqTM 7000 series seamlessly integrates
a powerful ARM Cortex-A9 processor with an FPGA fabric,
providing a versatile environment for algorithm development.

Additionally, one of the advantages of using deep learning
models with hierarchical architectures is their ability to
introduce parameters to control their size. This is especially
advantageous when the model must be implemented on low-end
hardware, because this opens another way to adapt the model to
its target optimally [19].

Only a few studies have presented hardware implementations
of heart-sound segmentation algorithms based on deep learning.
Kwiatkowski et al. [20] implemented a small CNN in an ARM
Cortex M7 processor with an inference time of 11 ms, using an
8-bit representation. Vakamullu et al. [21] used a Raspberry Pi
3B (quad-core ARM Cortex A53) to implement a 1-dimensional
CNN. They used different combinations of the decimation
factor of the data and kernel size of the CNN to fit the model on
the targeted device. No execution times have been reported,
even though their design has been physically validated. These
works prove the feasibility of the implementation of deep
learning heart-sound segmentation algorithms on
microprocessors like ARM Cortex-M and -A series with
real-time performance. Even so, the heart-sound segmentation
algorithm is just a first step in a real-time CVDs screening
device, that will require the concurrent operation of multiple
algorithms, probably being most of them deep learning
models. For these reasons we believe an FPGA is a more
suitable device for this purpose, since the customization,
optimization, and parallelization capabilities these devices
have will unlatch the concurrent operation of the following
stages, as a murmur detector. Finally, the selection of a
heterogeneous platform, such as the Xilinx® ZynqTM 7000 series
will allow the rapid swapping of the computational workload
between the CPU and the FPGA during the development of the
system.

This work proposes an optimization of the implementation of
a U-Net-based segmentation algorithm targeting the Xilinx®
ZynqTM 7020 FPGA, as a first stage towards the development of
a real-time CVDs screening device. This work involves the
following contributions:

1) Reproduction of the U-Net-based segmentation
algorithm with sequential max temporal modeling,
evaluated over the 2016 Physionet/CinC Challenge
dataset [22], [23].

2) Evaluation of the model over the CirCor DigiScope
Phonocardiogram dataset [23], [24] proving its
suitability for a more extensive dataset with
environmental noise.

3) Identification of novel architecture parameters that
enable further control of the model size, and computation

of the effects these parameters have on the performance
metrics, number of model operations, and memory
consumption.

4) Exploration of two different implementation strategies:
one with shared memory for feature maps and the other
with streaming dataflows. For each strategy, the impact
of the model reduction parameters on the model
accuracy, FPGA resource consumption, and latency (i.e.,
execution time or inference time) of the model are
analyzed.

5) Offline evaluation of model performance and FPGA
resource consumption with different low-resolution
fixed-point representations using the aforementioned
public datasets.

6) Perform the preliminary step to envision a hand-held and
low-power device that automatically detects heart sound
abnormalities, enabling the detection of early signs of
CVDs in the clinical practice in short periods of time.

To the best of our knowledge, this is the first work that
assesses an in-depth study of the U-Net-based cardiac sounds
segmentation algorithm targeting an FPGA implementation. It
includes an exhaustive analysis of the influence of the
aforementioned model reduction parameters and the
optimization of the model implementation to achieve the best
performance in terms of (i) classification metrics, (ii) latency,
and (iii) FPGA resource consumption, thus demonstrating that
the state-of-the-art cardiac sounds segmentation algorithm can
be executed in real-time on a low-end device.

The rest of the paper is organized as follows: Section II
introduces the underlying concepts of the operations in CNNs
and the basis of the HLS tools to the reader; the U-Net-based
segmentation model is presented in Section III; Section IV
includes the methodology followed for the model optimization
during the training and implementation steps; the datasets used
for experiments, the target FPGA, the results of the training, the
HLS C simulations with fixed-point representations, the
synthesis, the C/RTL co-simulation and a comparison with
other implementations are included in Section V. Finally, some
conclusions are drawn in Section VI. An open-source release of
the code used in this work is available on GitHub 1.

II. BACKGROUND

A. Convolutional Neural Networks
CNNs are a type of neural network capable of extracting

features from data using convolutional structures inspired by
the biological vision perceptron. These architectures have
been particularly successful in computer vision and solving
tasks such as object detection [25] with state-of-the-art
accuracy. CNNs have also shown promising results in the
biomedical field at tasks such as image segmentation [9] and
disease classification [26].

The output of each convolutional layer is called a feature
map because it is composed of the features learned by the

1https://github.com/eneriz-daniel/PCG-Segmentation-Model-Optimization/

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3392271

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

corresponding layer. The key layer parameter is the
convolutional kernel, which represents the vision receptors.
Because they have a limited size, they are affected by border
effects, thereby reducing the output feature map. To fix this,
padding can be employed to enlarge the input with zeros, and
thus cancel the border effects. In addition, stride is the
parameter that controls the density of the convolution
operations: the larger it is, the lower the density.

In the U-Net-based segmentation model, as temporal signals
are processed (i.e., PCGs), the convolutional layers are all 1D.
In addition, they all have a stride of one and 1D kernels with a
size of three. The input matrix is denoted as 𝐀𝐀 ∈ ℝ𝑁𝑁m×𝑛𝑛in and
the output as 𝐁𝐁 ∈ ℝ𝑁𝑁m×𝑛𝑛out , where 𝑁𝑁m is the number of
elements along the time axis, 𝑛𝑛in is the number of input
features, and 𝑛𝑛out is the number of output features, the
operation is defined as

 𝐁𝐁𝑖𝑖,𝑘𝑘 = � � 𝐀𝐀𝑙𝑙,𝑗𝑗𝐖𝐖𝑙𝑙−𝑖𝑖+1, 𝑗𝑗, 𝑘𝑘

𝑛𝑛in−1

𝑗𝑗=0

min(𝑁𝑁m−1, 𝑖𝑖+1)

𝑙𝑙=max(0, 𝑖𝑖−1)
 (1)

where the generic notation for elements in a matrix is 𝐂𝐂𝑖𝑖,𝑗𝑗 , that
denotes the i-th element in the time axis of the j-th feature. In
addition, the weights tensor is denoted by W∈ ℝ𝑁𝑁m×𝑛𝑛in×𝑛𝑛out
and the element subscripts in the 𝐖𝐖𝑖𝑖, 𝑗𝑗, 𝑘𝑘 correspond to the
time dimension, input features, and output features,
respectively. Besides, instead of zero-padding the inputs, the
spatial dimensions are preserved along the feature maps in (1)
by adjusting the kernel operation limits. Finally, after the
operation of the convolutional layer, a nonlinear activation
function is applied to the output matrix B. In this study, three
different activation functions are used: the rectified linear unit
(ReLU), which operates elementwise and is defined as

 ReLU(𝑧𝑧) = max(0, 𝑧𝑧) ; (2)

ArgMax, which returns the index of the maximum when
operating over a vector, and SoftMax, which is defined as

 σ(𝒛𝒛)𝑖𝑖 = 𝑒𝑒𝑧𝑧𝑖𝑖

∑ 𝑒𝑒𝑧𝑧𝑗𝑗
𝑗𝑗

 . (3)

Additionally, CNN architectures also comprise layers that
manipulate the feature maps: pooling layers that reduce their
dimensionality, up-sampling layers that operate conversely,
increasing them, and concatenation layers that allow stacking
them.

B. High-Level Synthesis
HLS tools have become popular in hardware design,

increasing abstraction from the Register Transfer Level
(RTL), whose complexity lengthens the development time in
System-on-Chip (SoC) designs. Basically, they enable
hardware synthesis from a high-level language, which
automatically generates the equivalent Hardware Description
Language (HDL); therefore, the design is easily implemented
in a hardware platform, such as an FPGA or ASIC, without the
need to develop an RTL design [27], [28].

Specifically, Vivado HLS is a tool suitable for synthesizing
and implementing a design from an algorithmic description,
converting C/C++ code into HDL, which can be used to

program a Xilinx® FPGA. This process is based on four
steps:1) HLS C simulation, which runs the description code
and validates its operation; 2) synthesis, which generates the
equivalent HDL from the C/C++ description; 3) C/RTL co-
simulation, which verifies that both designs work accordingly;
and 4) HDL exportation. A key feature of Vivado HLS is that
it allows the use of different directives to optimize the C/C++
code in an FPGA-friendly manner during the synthesis step.
Different directives should be selected in different sections of
the code, depending on the goal (area, throughput, or latency).
A summary of the directives used in this work is included in
Table II. In addition, the original code must sometimes be
modified to guide the synthesis process and take advantage of
FPGA characteristics [29].

III. RELATED WORK
Renna et al. [10] presented the first PCG segmentation

model based on CNN. Specifically, it is an adaptation of U-
Net [9], a model developed for biomedical image
segmentation. To work with PCGs, the model was modified to
operate with 1-dimensional signals. A detailed schematic of
the architecture is presented in Fig. 2.

Prior to the model analysis, the data must be preprocessed.
First, each heart sound is band-pass filtered between 25 Hz
and 400 Hz. The spike removal method described in [6] is
then applied. The next step is the generation of four different
envelograms, as in [7], [10]:

1) Hilbert envelope: extracts the absolute value of the
Hilbert transform.

2) Homomorphic envelogram: computed by
exponentiating the low-pass filtered natural logarithm
of the Hilbert envelope.

3) Power Spectral Density (PSD) envelope: calculated
from the signal spectrogram between 40 and 60 Hz
with 50 % overlapping windows of 0.05 s width.

4) Wavelet envelope Computes the Shannon energy of a
decomposition level after applying a Daubechies
wavelet 2.

Finally, the envelograms are downsampled to 50 Hz to
reduce the computational impact and normalized to have a
zero mean and unit variance. A visual example of the pre-
processing step is presented in Fig. 3.

In this way, after preprocessing, a signal with four features
is obtained: x(t) ∈ ℝ4 for 𝑡𝑡 = 0, … , 𝑇𝑇 − 1, where t indicates
the time instant, and T is the total time of the PCG. Denoting
s(t) as the sequence containing the state labels for each time
instant (s(t) ∈ {1, 2, 3, 4}, where state 1 corresponds to S1,
state 2 corresponds to the systole interval, state 3 to S2 and

2 In [8] the Daubechies 10 wavelet at decomposition level three was used,

but in our case, we used Daubechies 1 wavelet at decomposition level 4 as
done in [30].

TABLE II
HLS DIRECTIVES SUMMARY

Directive Description
pipeline Allows concurrency in operations execution
unroll Creates copies of the loop to allow parallel execution
dataflow Enables task and operations execution overlapping

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3392271

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

state 4 to the diastole interval) and given x(t), the
segmentation model provides an estimation of its
corresponding state sequence s(t). Patches of fixed length N
are extracted from x(t) with a specific stride 𝜏𝜏 = 𝑁𝑁/8 to be
used as the input for the model, which are expressed as 𝐗𝐗(𝑛𝑛) ∈
ℝ𝑁𝑁×4 and obtained as follows:

𝐗𝐗(𝑛𝑛) = �
𝒙𝒙(𝑛𝑛 · 𝜏𝜏)

⋮
𝒙𝒙(𝑛𝑛 · 𝜏𝜏 + 𝑁𝑁 − 1)�

 , (4)

for 𝑛𝑛 = 0, … , �
𝑇𝑇 −1−𝑁𝑁

𝜏𝜏 �, where ⌊𝑎𝑎⌋ indicates the greatest
integer lower than or equal to 𝑎𝑎.

The first stage of the network consists of four encoding
blocks, where the signal is compacted in the time dimension
while the number of channels is increased. This keeps only the
most relevant information for PCG segmentation and reduces
the impact of noise. Each encoding block is composed of two
consecutive 1D-convolutional layers with ReLU activation
and a max-pooling layer that halves the time dimension. The
number of filters of the convolutional layers in the first
encoder is eight, which is doubled in each encoder to increase
the number of channels. After the encoder part, two
consecutive 1D-convolutional layers with ReLU activation
and 128 filters are placed in the architecture section with the
highest temporal compression. It is then followed by the
decoding stage, where information is expanded back in the
time dimension, omitting irrelevant information from the input
signals.

In more detail, each decoder has two inputs, the previous
feature map and a skip connection, allowing direct
information transfer from the encoded layers to the decoded
ones. First, the time dimension is doubled by an up-sampling
layer followed by a 1D-convolutional with ReLU activation,
which halves the number of channels. Then, its output is
concatenated along the channel axis with the skip connection
originated at the analog encoder block, doubling the channels
again. Subsequently, two consecutive 1D-convolutional layers
with ReLU activation are placed to decode the information
and reduce the number of channels to half of the decoder
input. The number of filters in each decoder layer is fixed to
obtain an output with the same shape as their encoder

counterparts.
As mentioned earlier, the kernel size of all convolutional

layers in both the encoder and decoder blocks is fixed at 3.
Additionally, a stride equal to 1 with padding ‘same’ is used to
preserve the shape of the feature maps between the layers.

Finally, there is an extra 1D-convolutional layer with four
filters and SoftMax activation, which provides the probability
of being in each fundamental heart state per time instant of the
input patch n, 𝐘𝐘(𝑛𝑛) ∈ ℝ𝑁𝑁×4. Because the patch size N and
stride τ for a given time instant t will influence Y(n),
overlapping patches are used to minimize the influence of
border data samples. Therefore, the information obtained from
the patches is combined by averaging the state probabilities
associated with different Y(n) values. This allows the

Fig. 3. PCG preprocessing example, where four different
normalized envelopes-envelograms are extracted from the
normalized PCG.

Fig. 2. Segmentation architecture scheme. The channels are represented in the ordinate axis, the time is on the abscissa axis. N
is the input window length and n0 is the base number of filters. This representation shows nenc=4 encoders and decoders. For
visualization purposes, the concatenation of the skip connections is drawn in the time axis, while in fact is done in the channels’
axis. The list of studied values for the parameters N, n0, and nenc are also included.

N /
n 0

N
4

n 0

2n 0

n 0

2n 0

4n 0

4n 0

8n 0

8n 0

8n 0

4n 0

16n 0

2n 0

4
N

N/2

N/4

N/8

N/16 N/16

N/8

N/4

N/2
1

2

3

4
n enc

X Y

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3392271

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

computation of 𝒚𝒚(𝑡𝑡) ∈ ℝ4 for 𝑡𝑡 = 0, … , 𝑇𝑇 − 1, which are the
probabilities of each fundamental heart state at each time
instant of the input recording.

The goal of the model is to estimate the sequence of heart
states s(t). In [10], different temporal modeling solutions were
evaluated, forcing the output sequence to contain only
admissible transitions between cardiac cycle states. In this
work, sequential max temporal modeling is selected owing to
its simple implementation and low computational complexity,
providing performance comparable to the other strategies
studied. First, a coarse estimation of s(t) is obtained as
follows:

𝑠𝑠(̃𝑡𝑡) = argmax 𝒚𝒚(𝑡𝑡) . (5)

Then, the output sequence 𝑠𝑠(̂𝑡𝑡) is forced to contain only
admissible transitions by setting 𝑠𝑠(̂0) = 𝑠𝑠(̃0) and using the
rule:

𝑠𝑠(̂𝑡𝑡) = �
𝑠𝑠(̃𝑡𝑡) if 𝑠𝑠(̃𝑡𝑡) = 𝑠𝑠(̃𝑡𝑡 − 1) mod 4 + 1

𝑠𝑠(̃𝑡𝑡 − 1) otherwise , (6)
for 𝑡𝑡 > 0.

IV. METHODOLOGY
There are two main ways to optimize the model

implementation to achieve real-time performance. One is the
reduction of the model architecture, which can be enabled
with model parameterization in the case of hierarchical
architectural models. The other is during the implementation
itself, where some paradigms can be followed to optimize the
model. Fig. 4 shows a summary of these two optimization
routes, described in the following subsections. The fixed-point
representation analysis is also included in the diagram as part
of the optimization, which will be discussed in Section V.

A. Model reduction strategy
As mentioned in Section I, one of the advantages of deep

learning models is their reduction capacity. In this case, the
original model is already parameterized by N, the input
window length, which takes values of 64, 128, 256, and 512.
This enables slight control of the model size in terms of the
number of operations and feature map memory, which has
nfm=328·N elements. In contrast, the number of parameters
remains the same, nw=179,904, because all kernels are
dependent only on the kernel size and the number of input and
output filters present in each layer.

Two more parameters are identified to further control the
model size: the number of filters used in the first encoder, n0,
and the number of encoders/decoders, nenc, as illustrated in
Fig. 2.

The first one controls the number of filters in all layers
because it is duplicated at each encoding step and halved at
each decoding step until the original number of filters is
recovered. This parameter was initially set to 8, but it is
reduced to 4 in steps of 1. Note that reducing the filter size
below 4 is useless, since there are four input features, and the
output size is 4. The second, the number of encoding/decoding
stages, is a coarse control of the model. It was originally set to
4 and, in this work, varies from 4 to 1 in steps of 1. With these
reductions, the number of weights nw, and the total number of

elements in the feature maps nfm, are respectively, given by

 𝑛𝑛w = 3 · 𝑛𝑛0 �
8 + 𝑛𝑛0 �

1 + 11 � 4𝑖𝑖
𝑛𝑛enc−1

𝑖𝑖=0 ��
 , (7)

 𝑛𝑛fm = 𝑁𝑁 · �8 + 𝑛𝑛0(2 + 𝑛𝑛enc(19/2))� . (8)

Hence, 80 different models are considered (4·N × 5·n0
× 4·nenc), ranging from the minimal model with nw = 672
elements and nfm = 3,456 elements to the largest model with
nw = 179,904 elements and nfm = 167,963 elements.

B. Implementation optimization strategies
One of the main reasons for implementing a

computationally intensive model, such as the U-Net-based
model, in an FPGA is the capability this technology offers to
parallelize tasks while enabling the possibility of working with
arbitrary-length fixed-point data types, which can save
resources in the final hardware implementation. Because this
algorithm is aimed at helping physicians in real-time, in this
case, the latency is considered the main Key Performance
Indicator (KPI), together with the logic resources usage, which
are mainly Block Random Access Memory (BRAMs), Digital
Signal Processing (DSPs) slices, Flip-Flops (FFs), and Look-
Up Tables (LUTs).

To set a reference, a baseline implementation without any
optimization strategy is developed. The implementation of the
Conv1D layer under this paradigm is shown in Algorithm 1,
where the input and output matrices A and B, respectively,
have unique memory spaces. As shown in the algorithm, the
convolution operation is based on nested loops. Thus, one of
the more potential ways to accelerate this model is to perform
loop unrolling and pipelining [31], which are the basic
directives used in any loop optimization process. The first one,
loop unrolling, is based on the physical implementation of
more than one loop epoch, enabling a certain parallelization
level. In HLS, loop unrolling was implemented using the
unroll directive in the loops that were a bottleneck for the
model latency. The second one, pipelining, enables concurrent
execution using the same hardware. For this, the operations
schedule is tailored to maximize hardware usage and minimize
latency. The HLS directive employed to pipeline the desired
section of the code was pipeline. Usually, the usage of these
directives rapidly scales resource consumption, which makes
them a poor-quality optimization control.

Fortunately, in addition to the basic optimization directives,
other strategies can be followed in HLS to further improve the
implementation optimization. These strategies are commonly

Fig. 4. Summary of the optimization strategies addressed in
this study.

Optimizations for real-time performance

Model reduction

N n0 nenc

Implementation
paradigm

Memory
sharing

Streaming
dataflow

Fixed-point
representation

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3392271

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

related to the way the description code is written and/or the
kind of resources it uses for its synthesis. In this study, two
different strategies are tested to optimize the U-Net-based
heart-sound segmentation algorithm: a memory-sharing
strategy, where there is a common memory space where the
feature maps are stored, and a streaming dataflow strategy,
where the feature maps are treated as data streams that flow
through the network. The former is similar to the optimized
code that would be implemented on a CPU, whereas the latter
treats the feature maps as a First-In-First-Out (FIFO) queue,
which requires a specific way to compute the model layer
operations. Both implementation strategies are explained in
detail in the following subsections.

1) Memory-sharing optimization strategy
The baseline model implementation, wherein each feature

map is stored in an independent array, extensively uses othe
FPGA logical resources. To reduce this usage, only two
unique arrays are used to store all the different feature maps
generated by the model. These arrays have the largest size in
both dimensions (i.e., N × 16 n0, as shown in Fig. 2), so the
largest and the smallest feature maps can use the same arrays.
Thus, optimization directives can be added to reduce latency
by taking advantage of the saved resources.

The reason for using two different arrays is to avoid
conflicts between readings and writings in the same array,
which would lead to a malfunction of the algorithm because
previous time instants of the input feature maps are used to
compute a given time instant of the output feature map. In
addition, because the model employs skipped connections, the
feature maps that must be concatenated in the decoding layers
must be stored in separate arrays.

The Conv1D implementation under this paradigm is also
shown in Algorithm 1, although in this case, the input and

output matrices, A and B respectively, are saved in one of the
two feature map memory spaces.

2) Streaming dataflow optimization strategy
There are two main reasons for testing the streaming

dataflow optimization strategy. First, with this paradigm, each
feature map is treated as a FIFO, significantly reducing
memory usage and access. This is expected to translate into a
significant latency reduction and logic resource decrease,
which would allow further optimizations by applying the
previously mentioned basic optimization directives in more
sections because more free logic is available in the device.
Conversely, the code is less optimizable, because the data
stream can only be accessed once per clock cycle. However,
pipeline and loop unrolling directives can further optimize the

Algorithm 2 Streaming dataflow implementation of the
Conv1D layers
Inputs: Stream a (in a FIFO buffer), with the values of A∈

ℝ𝑁𝑁m×𝑛𝑛in with priority of the feature dimension;
Matrix W∈ ℝ𝑁𝑁m×𝑛𝑛in×𝑛𝑛out (in a dedicated memory
space).

Outputs: Stream b (in a FIFO buffer), with the values of B∈
ℝ𝑁𝑁m×𝑛𝑛out with priority of the feature dimension.

Initialize scalars: inval, buffval
Initialize vector with zeros: 𝒂𝒂𝒂𝒂𝒂𝒂 ∈ ℝ𝑛𝑛out
Initialize matrix: 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁 ∈ ℝ2×𝑛𝑛in
#(dataflow)
for all i = −1 to Nm do

for all j = 0 to nin−1 do
if i > -1 and i < Nm then

inval ← a
else

inval = 0
end if
for all l =0 to 2 do

if l = 2 then
buffval = inval

else
buffval = 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝑙𝑙,𝑗𝑗

end if
for all k = 0 to nout−1 do #(pipeline)

acck += buffval · 𝐖𝐖𝑙𝑙, 𝑗𝑗, 𝑘𝑘
if j = nin−1 and l = 2 then

if i ≥ 1 then
b ← ReLU(acck)

end if
acck = 0

end if
end for
if l > 0 then

𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝑙𝑙−1,𝑗𝑗 = buffval
end if

end for
end for

end for
The pipeline directive is used only in the Conv1D layers of selected encoders and decoders of the
optimized streaming dataflow implementation.

Algorithm 1 Memory-based implementation of the Conv1D
layers
Inputs: Matrix A∈ ℝ𝑁𝑁m×𝑛𝑛in (either in a dedicated or shared

memory space); Matrix W∈ ℝ𝑁𝑁m×𝑛𝑛in×𝑛𝑛out (in a
dedicated memory space).

Outputs: Matrix B∈ ℝ𝑁𝑁m×𝑛𝑛out (either in a dedicated or shared
memory space).

Initialize scalars: acc, lmin, lmax
for all k = 0 to nout−1 do

for all i = 0 to Nm−1 do #(unroll, pipeline)
lmin = max(0, i–1)
lmax = min(Nm−1, i+1)
acc = 0
for all l = lmin to lmax do

for all j = 0 to nin do
acc += 𝐀𝐀𝑙𝑙,𝑗𝑗 · 𝐖𝐖𝑙𝑙−𝑖𝑖+1, 𝑗𝑗, 𝑘𝑘

end for
end for
Bi,k = ReLU(acc)

end for
end for
The unroll and pipeline directives are used only in the Conv1D layers of selected encoders and
decoders of the optimized memory-sharing implementation.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3392271

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

remaining operations performed, such as multiple
accumulation (MACC) and buffer accesses, can be further
optimized.

Second, under this dataflow paradigm, the execution of
different layers of the model can overlap, that is, before
finishing the calculations of one layer, the following layer can
start executing when enough input elements have been
generated. This is a crucial advantage of this strategy, as it was
not possible in the memory-based implementation, which
limits the execution of a given layer after the completion of
the previous layer.

As illustrated in Algorithm 2, significant differences exist
between this implementation and the memory-based ones (i.e.,
the baseline and memory-sharing implementations). The HLS
Stream Library allows the use of streams, which are the C
constructs that enable the employment of FIFO with
configurable depths in this way. Because the convolution
kernel of the model is 3, the input feature map time instants
are used up to three times. To enable this under the dataflow
paradigm, small memory buffers are used to store and reuse
the samples.

V. EXPERIMENTS
In this section, the procedure for performing model training

and the implementation results is described. First, a subsection
describing the datasets used in this study and the target FPGA
is presented. Subsequently, the training process and
performance metrics are described, and the model
performance results are reported. Then the results of the HLS
C simulation of the models with fixed-point data types, their
synthesis and C/RTL co-simulation results are discussed.
Next, another subsection analyzes the effect of the fixed-point
data type on the model performance, latency, and FPGA
resource consumption. Finally, a comparison with other deep-
learning-based heart sound segmentation models
implementation is included.

A. Materials
1) Datasets

Two different datasets are used in this study. The first is the
publicly available data3 from the 2016 Physionet/CinC
Challenge dataset [22], [23]. It is composed of 792 PCGs from
135 patients with and without pathologies recorded in clinical
and non-clinical environments. To identify the ground-truth
segmentation labels, the dataset also provides the estimated
positions of the R-peak and end-T-wave points in an
Electrocardiogram (ECG) recorded simultaneously with the
PCG [7]. The R-peak and end-T-wave positions corresponded
to the S1 and S2 states, respectively.

The second dataset is the public data4 from the CirCor
DigiScope Phonocardiogram dataset [23], [24], released for
the 2022 George B. Moody Physionet challenge. It is
composed of 3163 PCGs from 942 patients with and without
pathologies recorded during two mass screening campaigns

3 physionet.org/content/hss/1.0/
4 physionet.org/content/circor-heart-sound/1.0.3/

conducted in the state of Paraíba, Brazil, between July and
August 2014 and June and July 2015. These recordings have
noise sources typical of an ambulatory environment, making
this dataset a representative sample of real-world
environments in which a PCG diagnostic aid device would be
used. In this case, segmentation annotations were obtained
from a semi-supervised scheme. First, the algorithms proposed
in [7], [8] and the U-Net-based model presented in [10] were
used to obtain baseline labels, and then, a cardiac pathologist
inspected their automatic annotations and re-annotated the
misdetections. Unfortunately, labels were retained only in the
segments indicated by the expert as a high-quality
representative; therefore, there may or may not be a
segmentation annotation at a given time in the recording.

2) Target FPGA
The target FPGA to map the U-Net-based model is the

Xilinx® XC7Z020, which is the Programmable Logic (PL) of
the Xilinx® ZynqTM 7020 low-end SoC. It includes 85 K
programmable logic cells, 53.2 K LUTs, 106.4 K FFs, 4.9 Mb
of BRAM, and 220 DSP slices of 18 × 25 MACC blocks. The
SoC also includes a Processing System (PS) consisting of a
dual-core ARM Cortex-A9 with a maximum clock frequency
of 667 MHz and 512 MB RAM [18].

B. Model evaluation methodology
To properly compare the performance of the models trained

for this work with previously published results [10], the same
data partition is performed for both datasets: 10-fold cross-
validation with patient-exclusive splits. To reduce the HLS C
simulation of the generated models (which is especially time-
consuming), another partition with patient-exclusive splits for
training (60%), validation (20%), and testing (20%) is also
performed. The resulting model parameters of this second
training are used to test the implementation of the HLS tool.

For both data partition schemes with both datasets, the
categorical cross-entropy is used as the loss function for the
Adam optimizer, as done in [10], and the same training
hyperparameters are used: learning rate of 10−4, batch size of
1, and 15 epochs. The model weights at the minimum
validation loss are saved.

All the training experiments are run with the Keras Python
package [32] with a Tensorflow 2.8.0 backend over computing
nodes with 24-core AMD EPYC 7443P CPUs, NVIDIA
GeForce RTX 3090 GPUs, and 64 GB of RAM.

1) Performance metrics
The performance metrics used for both data partition

schemes include those used in [10]: the recording accuracy
(AR), defined as the fraction of instants in the entire recording
output sequence 𝑠𝑠(̂𝑡𝑡) that are correctly assigned to the
corresponding label in the ground truth sequence 𝑠𝑠(𝑡𝑡), the
positive predicted value (𝑃𝑃+), and the sensitivity (S), which
are computed as

 𝑃𝑃+ =
𝑇𝑇p

𝑇𝑇p + 𝐹𝐹p
 , (9)

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3392271

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

 𝑆𝑆 =
𝑇𝑇p

𝑇𝑇tot
 , (10)

where a true positive (𝑇𝑇p) is counted when the center of an S1
(or S2) sound in the estimated sequence 𝑠𝑠(̂𝑡𝑡) is closer than
60 ms from the corresponding sound in the ground-truth
sequence 𝑠𝑠(𝑡𝑡). All others are considered false positives (𝐹𝐹p),
and 𝑇𝑇tot is defined as the total number of S1 and S2 sounds in
the ground-truth sequence 𝑠𝑠(𝑡𝑡).

Another way to compute accuracy is also considered in this
study. As can be seen from the previous description, the state
sequence of the entire recording is used to compute the
recording accuracy AR. This requires a reconstruction step to
obtain the recording output probabilities 𝒚𝒚(𝑡𝑡) and temporal
modeling to obtain the estimated sequence 𝑠𝑠(̂𝑡𝑡). This is
undesirable in the HLS C simulation process, which is time
consuming. Therefore, we define the global accuracy (AG) as
the fraction of instants in each output probability patch n,
𝐘𝐘(𝑛𝑛) ∈ ℝ𝑁𝑁×4 that have been correctly estimated compared
with the ground-truth one-hot encoding state patch n, 𝐒𝐒(𝑛𝑛) ∈
ℝ𝑁𝑁×4 defined as

𝐒𝐒(𝑛𝑛) = �
𝒔𝒔(𝑛𝑛 · 𝜏𝜏)

⋮
𝒔𝒔(𝑛𝑛 · 𝜏𝜏 + 𝑁𝑁 − 1)�

 , (11)

where 𝒔𝒔(𝑡𝑡) is the one-hot encoding version of 𝑠𝑠(𝑡𝑡).

2) Results
A comparison of the 10-fold cross-validation results of the

models with n0 = 8 and nenc = 4 over the 2016 dataset with
their equivalents from [10] is presented in Table III. As
shown, a similar performance is achieved in both works,
although our work reports slightly better results at lower N
values. This may be related to the differences in random
sampling of the data partition.

Fig. 5 shows the distribution of the models resulting from
each reduction parameters combination in terms of total
recording accuracy and the number of MACC operations. It is
remarkable how the N = 64 models rapidly scale in accuracy
while maintaining a constrained number of operations. Also, it
can be noticed that slightly better performance is reached for
higher N values. This is an effect of the reduction of the
dataset due to the necessity of samples with longer
segmentation annotations, and thus not an intrinsic
improvement due to the model architecture. For these reasons,
only the results of N = 64 models are considered in the
remainder of the paper, although a complete report is available
in the GitHub code repository.

The results of the 10-fold cross-validation of the models for
the 2016 and 2022 datasets are presented in Table IV. In terms
of the models’ reduction strategy, it is noticeable the effect of
the coarse parameter nenc. Its reduction from nenc = 4 to nenc = 3
barely decreases the model performance, and when it is further
reduced to nenc = 2, the effect remains contained. At nenc = 1,
the model is truly limited, showing significant downgrades,
especially for lower n0 values. Meanwhile, the effect of n0 on
model performance is smoother than that of nenc. Generally,
negligible downgrades are observed when n0 is reduced,

although it becomes relevant at nenc = 1, as previously
mentioned.

The results of the training with the second data partition
scheme, where training, validation, and testing splits are used,
show the same parameter effects as the cross-validation ones,
and thus, they are not fully reported. Only the global accuracy
AG is included, which is contained in the HLS C simulation
results available in Table V and labeled as floating-point
accuracy. Note that these results are slightly different from the
cross-validation results owing to the different ratios between
the training and testing splits. In this case, it is 60/20, while for
the cross-validation is 90/10.

C. HLS C Simulation
Once the model is validated in the training stage, it is

manually ported to C++ to enable its implementation through
Vivado HLS for the inference stage. This tool allows the use
of arbitrary-length fixed-point data types through the Arbitrary
Precision Data Type Library. A model represented by lower-
resolution data types is expected to show a downgrade in
performance compared to the model described in the higher-
level training framework that uses 32-bit floating-point

TABLE III
PERFORMANCE COMPARATION OF THE MODELS WITH n0=8 AND
nenc=4 TRAINED WITH 10-FOLD CROSS-VALIDATION OVER THE

2016 DATASET WITH THE RENNA ET AL. RESULTS. BEST
RESULTS FOR BOTH MODELS ON EACH METRIC ARE

HIGHLIGHTED.
N AR (%) S (%) P+ (%)

64 91.5±1.6 91.2±2.3 94.1±2.1 Renna et al. [10]
92.5±1.4 94.0±2.2 94.4±1.8 This work

128 92.6±1.6 92.7±2.0 95.6±2.0 Renna et al. [10]
93.5±1.5 95.2±2.0 95.2±1.9 This work

256 93.0±1.7 94.3±1.9 95.4±2.0 Renna et al. [10]
93.8±1.5 95.7±1.9 95.6±2.3 This work

512 93.7±1.0 95.2±1.2 95.8±1.4 Renna et al. [10]
93.6±1.3 95.7±1.6 95.8±1.3 This work

Fig. 5. Total recording accuracy of each model parameters
combination for the 10-fold cross-validation trainings over
the 2016 dataset in function of the number of Multiply-
Accumulate (MACC) operations. The diameter of each point
represents the number of weights in each model, nw.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3392271

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

representation. This is owing to the quantization effect that
appears when arithmetic operations are performed with lower-
resolution fixed-point data types. To characterize this
downgrade, the HLS C simulation feature can be used to
virtualize the model implementation using the selected data
type. In this stage, a Q8.8 data type is used, that is, eight
integer bits and eight fractional bits, for a total of 16 bits.

In addition, the activation function of the last convolutional
layer, SoftMax, is substituted. This function is beneficial
during the training stage because it is a smoother version of
ArgMax, enabling faster training processes. However, because
it requires exponential operations, it is computationally
expensive; therefore, for implementation purposes, it is better
to use ArgMax which can be easily implemented with
comparators and small memory elements.

To measure the performance of the models on both datasets,
HLS C simulations are conducted for each model parameter
combination on each dataset. Note that the model performance
is independent of the model implementation, because they are
all equivalent to the Keras model. Thus, only the HLS C
simulation results for the baseline implementation are reported
herein. The results are presented in Table V. It is remarkable
that the difference between the floating-point and Q8.8 fixed-
point performance is independent of the model parameters N,
n0 and nenc. The average downgrades in the 2016 dataset are
0.04 ± 0.13% and 0.01 ± 0.04% for the 2022 dataset.

D. Synthesis
This subsection presents the synthesis results obtained after

applying HLS directives to reduce the model latency and
memory consumption, as well as some code modifications to
fully exploit the parallelization capabilities of the FPGA. To
obtain realistic resource consumption results, the source file
includes basic interface directives that set the input and output
interfaces as AXI4-Lite slaves [33], except for the input and
output streams of the dataflow version, which are set as AXI4
Stream [34].

To properly assess the effect of optimization strategies on
different combinations of model parameters, the synthesis
results of the baseline, memory-sharing, and streaming
dataflow implementations without any optimizations are
presented in Table VI. Remarkably, the limiting resource in all
implementations is the BRAM, which is almost or above
100% for the models with 𝑛𝑛0 ∈ {8, 7} and nenc = 4. Also, it can
be noticed that this resource has a stepped scaling. This is
probably due to the instantiation of memory blocks, which
must have a power-of-two depth. In terms of DSP, it is shown
that this resource is only dependent on the nenc parameter, and
the same consumption appears across different
implementations. This is because of the lack of optimization
directives, which means that only a single slice is used for
each Conv1D layer. Finally, the dependence on nenc is also the
main effect in FF and LUT consumption, although it is
noticeable that they consume less for n0 = {4, 8}. This may

TABLE IV
PERFORMANCE METRICS AVERAGES AND STANDARD DEVIATIONS COMPUTED FROM THE 10-FOLD CROSS VALIDATION
EVALUATION OF THE N = 64 MODELS FOR BOTH DATASETS. BEST RESULTS FOR BOTH DATASETS IN EACH METRIC ARE

HIGHLIGHTED.
 AR (%) AG (%) S (%) P+ (%)
 nenc

n0 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1

20
16

8 92.5±1.4 92.4±1.4 90.9±1.7 81.2±2.5 91.9±1.5 91.4±1.6 90.0±1.9 83.5±2.1 94.0±2.2 93.7±2.1 91.4±2.4 78.5±3.4 94.4±1.8 94.3±1.7 93.5±2.0 88.4±2.4
7 92.8±1.3 92.4±1.4 90.8±1.9 81.2±2.6 92.0±1.4 91.5±1.5 90.0±1.8 83.2±2.0 94.2±2.1 93.7±2.2 91.2±2.7 78.7±3.7 94.1±1.8 94.2±1.8 93.5±2.2 88.5±2.8
6 92.8±1.3 92.5±1.5 90.5±1.8 80.7±2.2 91.9±1.5 91.5±1.6 89.9±1.8 82.7±2.0 94.5±1.9 94.0±2.4 90.9±2.5 78.0±3.1 94.4±1.8 94.1±1.9 93.8±1.6 88.5±2.3
5 92.8±1.2 92.4±1.3 90.4±1.8 78.7±2.4 91.7±1.5 91.3±1.6 89.4±1.9 81.8±2.0 94.5±1.8 93.8±2.2 90.9±2.6 75.5±3.8 94.4±1.6 94.2±2.0 93.3±2.0 87.7±2.6
4 92.5±1.4 92.1±1.5 90.1±1.8 77.6±3.6 91.6±1.5 91.1±1.6 88.9±1.8 80.6±2.3 94.1±2.2 93.3±2.4 90.5±2.7 73.9±5.0 94.4±1.8 94.1±2.0 92.8±1.8 86.5±2.9

20
22

8 90.2±0.8 90.1±0.9 89.1±0.9 84.6±0.9 90.1±0.8 90.0±0.9 88.9±0.9 84.7±0.9 96.0±1.0 95.9±1.0 94.2±1.1 87.8±1.0 96.0±0.8 96.1±0.9 95.4±1.0 93.2±0.9
7 90.2±0.9 90.0±0.9 89.0±0.9 84.1±0.9 90.1±0.9 89.9±0.9 88.8±0.9 84.3±0.9 96.1±1.1 95.7±1.1 94.0±1.0 87.1±1.0 96.1±0.9 95.9±1.0 95.4±0.9 92.8±0.8
6 90.3±0.9 90.0±0.9 88.8±0.9 84.0±0.9 90.1±0.8 89.8±0.8 88.7±0.8 84.0±0.9 96.2±1.0 95.8±1.0 93.9±1.0 87.1±1.0 96.1±0.8 96.0±0.9 95.3±0.9 92.8±0.9
5 90.2±0.9 89.9±0.9 88.6±1.0 82.7±1.2 90.0±0.8 89.7±0.9 88.4±0.9 83.1±1.0 96.1±1.0 95.6±1.0 93.6±1.2 85.5±1.5 96.0±0.9 95.8±0.9 95.2±0.8 92.3±1.0
4 90.0±0.9 89.8±0.9 88.1±1.0 81.9±1.0 89.7±0.9 89.5±0.8 87.9±0.9 82.2±0.9 95.9±1.0 95.5±1.0 93.0±1.2 84.5±1.2 95.9±1.0 95.8±1.0 95.0±0.9 91.8±1.3

TABLE V
GLOBAL ACCURACY OF THE N = 64 MODELS FROM THE DEFINITIVE TRAININGS USING FLOATING-POINT AND Q8.8 FIXED-POINT

REPRESENTATIONS AND THEIR DIFFERENCES FOR THE BOTH DATASETS. BEST RESULTS FOR BOTH DATATYPES ARE HIGHLIGHTED
FOR BOTH MODELS.

 GPU Inference - Floating-point accuracy (%) FPGA inference - Q8.8 fixed-point accuracy (%) Difference (%)
 nenc

n0 4 3 2 1 4 3 2 1 4 3 2 1

20
16

8 90.55 89.50 88.10 82.16 90.51 89.47 88.09 82.09 0.04 0.03 0.00 0.07
7 91.01 89.25 87.92 81.66 90.95 89.26 87.95 81.63 0.06 -0.02 -0.03 0.03
6 90.07 89.32 88.30 81.46 90.08 89.37 88.27 81.46 -0.02 -0.05 0.03 -0.01
5 89.78 89.17 87.62 79.71 89.74 89.15 87.65 79.77 0.04 0.02 -0.03 -0.06
4 90.28 89.84 86.45 78.62 90.30 89.78 86.47 78.71 -0.02 0.05 -0.03 -0.09

20
22

8 91.16 90.73 89.64 85.76 91.14 90.72 89.66 85.73 0.02 0.01 -0.03 0.03
7 91.09 90.62 89.88 84.92 91.11 90.62 89.89 84.85 -0.02 0.01 -0.01 0.07
6 91.10 90.59 89.39 84.85 91.10 90.58 89.42 84.82 0.01 0.01 -0.03 0.02
5 90.58 90.35 89.26 84.33 90.39 90.41 89.26 84.29 0.19 -0.05 0.00 0.04
4 90.64 90.32 88.92 83.09 90.64 90.26 88.90 83.07 0.00 0.06 0.02 0.02

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3392271

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

also be related to memory organization in power-of-two
blocks, where memory accesses are inherently optimized.
Additionally, in memory-based implementations, LUTs also
have a slim dependence on N.

However, latency is affected by all model parameters. For
memory-based implementations, it scales linearly with N, and
in the streamed implementation is slightly lower. In the case of
the n0 and nenc parameters, the latency decreased rapidly.
Overall, these dependencies enable an extensive range of
latency values, as indicated in the complete results. In the case
of memory-based implementations, the highest measured
latency is 406.39 ms, while the lowest is 1.26 ms. For the
streamed implementation, this range is more constrained, from
100.62 ms down to 0.42 ms. This is due to the remarkable
latency reduction this implementation strategy presents
compared with the memory-based implementations, which
achieves an average latency decrease factor of 3.71 ± 0.61,
with a minimum of 2.69 and a maximum of 4.81.

To better characterize the maximum potential of each
implementation strategy, the N = 64, n0 = 8, and nenc = 4

models are implemented with the maximum optimization
available, using both strategies. The procedure followed in
each paradigm is presented in the following subsections, and
the FPGA resource consumption, latency and power
consumption results are presented in Table VII. The power
consumption results are estimated by the Vivado tool.

1) Memory-sharing implementation optimization
Using HLS to reduce model latency in the memory-sharing

paradigm, optimizations based on the aforementioned
directives are performed from the central part of the network
(the one that requires more clock cycles) to the borders until
the model implementation reaches the maximum logic
resources available in the FPGA. As labeled in Algorithm 1,
loop unrolling (unroll) and pipelining (pipeline) directives are
included in the second outer loop of the Conv1D layers (i
loop) of the last encoder, central part, and two first decoders.
This shows the best results after loop-by-loop and layer-by-
layer exhaustive analyses. Other optimization paths have also
been explored: loop unrolling and pipelining in the max-
pooling and up-sampling layers, ArgMax and ReLU activation
functions, and feature map array partitions. None of these
modifications led to significant improvements in latency.
These optimizations reduced the model latency by
approximately 8% during the synthesis.

Including these directives has led to a significant increase in
FPGA resources consumption, resulting in a 36% increase in
total power consumption.

2) Streaming dataflow implementation optimization
As expected, under the streaming dataflow paradigm using

the HLS Stream Library under the dataflow directive, the
latency decreases significantly while resource consumption
remains similar to the baseline implementation values. As in
the memory-sharing implementation, the limiting layers are
the central part and its nearest neighbors. In this case, this
effect is so relevant that the latency of the second central
Conv1D layer is 99.99% of the total latency, followed by the
two next Conv1D layers, from the first decoder, both with a

TABLE VII
SYNTHESIS, C/RTL CO-SIMULATION AND POWER

CONSUMPTION RESULTS OF THE N = 64, n0 = 8 AND nenc = 4
MODEL USING Q8.8 FIXED-POINT DATA TYPES FOR DIFFERENT

IMPLEMENTATIONS. THE LOWEST CONSUMPTIONS AND
LATENCIES ARE HIGHLIGHTED.

 Implementation
 Non-optimized

baseline
Optimized

memory-sharing
Optimized
streaming

BRAM (%) 103 97 99
DSP (%) 10 56 10
FF (%) 8 17 10

LUT (%) 33 93 44
Synthesis

Latency (ms)
Best 50.78 65.91 5.97

Worst 75.98 70.09 5.97
Cosimulation
Latency (ms)

Best 82.12 82.05 29.27
Worst 82.16 82.10 29.27

Power
consumption

(mW)

Dynamic 673 964 558
Static 169 180 163
Total 842 1144 722

Energy per inference (mJ) 69 94 21

TABLE VI
SYNTHESIS RESULTS OF THE DIFFERENT IMPLEMENTATIONS WITHOUT OPTIMIZATIONS OF THE N = 64 MODELS USING Q8.8 FIXED-

POINT DATA TYPES. RESOURCES CONSUMPTIONS OVER THE AVAILABLE IN THE XC7Z2020 ARE MARKED IN RED.
 BRAM (%) DSP (%) FF (%) LUT (%) Best Latency (ms) Worst Latency (ms)
 nenc

n0
4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1

Pr
el

im
in

ar
y 8 103 37 18 11 10 8 6 4 8 6 4 3 33 26 19 12 50.78 24.37 11.07 4.33 75.98 36.41 16.50 6.43

7 103 37 18 11 10 8 6 4 9 7 5 3 38 30 22 13 46.17 21.91 9.70 3.51 69.08 32.73 14.46 5.22
6 63 28 18 11 10 8 6 4 9 7 5 3 38 30 22 13 34.05 16.21 7.22 2.65 50.93 24.20 10.75 3.93
5 63 28 18 11 10 8 6 4 9 7 5 3 38 30 22 13 23.65 11.24 4.98 1.85 35.35 16.77 7.40 2.74
4 43 25 18 11 10 8 6 4 8 6 4 3 33 26 19 12 13.01 6.36 2.99 1.26 19.42 9.46 4.43 1.85

M
em

or
y

Sh
ar

in
g

8 97 31 14 8 10 8 6 4 7 6 4 3 32 26 19 12 50.78 24.37 11.07 4.33 75.98 36.41 16.50 6.43
7 97 31 14 8 10 8 6 4 9 7 5 3 40 31 22 14 46.17 21.91 9.70 3.51 69.08 32.73 14.46 5.22
6 57 23 13 8 10 8 6 4 9 7 5 3 39 31 22 14 34.05 16.21 7.22 2.65 50.93 24.20 10.75 3.93
5 57 23 13 8 10 8 6 4 9 7 5 3 39 30 22 13 23.65 11.24 4.98 1.85 35.35 16.77 7.40 2.74
4 35 18 12 8 10 8 6 4 7 6 4 3 32 25 19 12 13.01 6.36 2.99 1.26 19.42 9.46 4.43 1.85

St
re

am
ed

 8 98 31 12 6 10 8 6 4 8 6 5 3 39 30 22 13 17.76 7.43 3.37 1.61 20.71 8.65 3.92 1.87
7 94 28 11 6 10 8 6 4 8 6 5 3 40 31 22 14 13.60 5.69 2.58 1.24 15.86 6.63 3.01 1.44
6 54 19 10 6 10 8 6 4 8 6 5 3 40 31 22 14 10.00 4.19 1.90 0.92 11.66 4.88 2.21 1.06
5 54 19 10 6 10 8 6 4 8 6 5 3 40 31 22 13 6.95 2.91 1.33 0.65 8.10 3.39 1.54 0.75
4 35 16 10 6 10 8 6 4 8 6 4 3 38 30 22 13 4.46 1.87 0.85 0.42 5.19 2.18 0.99 0.49

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3392271

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

latency of 83.61% of the total.

Therefore, the optimization of Conv1D layer is based on the
usage of the pipeline directive, which inclusion in the
innermost loop (k loop in Algorithm 2) significantly decreases
the latency of the layer by allowing the overlapped operation
of different sections of the code. With this directive, the
latency of the second Conv1D layer of the central part
decreases by a factor of three, ceasing to be the layer with
largest latency. Given this, the model can be further optimized
by using the pipeline directive in the innermost loops of the
Conv1D layers with more latency than the already pipelined
Conv1D of the central part. These layers are the other layer in
the central part, the layers of the last encoder and those in the
first two decoders. With these directives, the model latency is
newly limited by the second Conv1D layer of the central part,
making the model three times faster with a reduction of 3.9%
of BRAM, which is the critical resource of this design.

Thanks to this reduction in BRAM consumption and the
constrained increase in other resources, the total power
consumption of this implementation is 14% lower than the
baseline.

E. C/RTL co-simulation
To verify that the RTL design generated by the HLS tool

works according to the C description, C/RTL co-simulation
analysis are assessed. In addition, this provides more realistic
latency values than those estimated during the synthesis stage.
Because this process is time consuming, only the baseline and
optimized memory-sharing and streaming dataflow
implementations of the N = 64, n0 = 8, and nenc = 4 models are
launched. The results are listed in Table VII. As shown, there
is an increase in the co-simulation latency compared with the
synthesis results. This is mainly because during synthesis,
model interfaces are not considered for latency computation.
Furthermore, Vivado HLS does not correctly compute the
latency of dataflow systems during synthesis, which explains
the larger increase in the co-simulation latency of the stream
implementation. Nevertheless, an overall decrease in latency

of 64% is achieved when the baseline and the optimized
streaming dataflow implementations are compared.

Considering that the batch size (i.e., the number of samples
the model evaluates per inference) was set to 1, the co-
simulation latency directly results in the model latency. In the
optimized streaming implementation, the model takes
2,926,713 cycles to process a sample at a clock frequency of
100 MHz, which means an inference time of 29 ms. The
model input is a window of 64 samples sampled at 50 Hz, i.e a
signal of 1.28 s duration. Hence, a 29 ms processing time can
be considered as real time with a significant margin for this
task.

F. Low-resolution fixed-point datatype effects
Finally, different low-resolution fixed-point data types

between 16 and 8 bits have been considered for both HLS C
simulation and synthesis. To simplify this analysis, the model
parameters are set as N = 64, n0 = 8, and nenc = 4. The results
are shown in Fig. 6, where the data types are sorted according
to the global accuracy drop. Generally, in terms of resource
consumption, slight reductions appear when the number of bits
of the data type is reduced. Only at 8-bit representations, the
BRAM drops significantly. This is due to the Vivado HLS
packing method for the elements of the input AXI Lite
interfaces, which forces them to use the nearest greater power-
of-two bits. Therefore, the 14-, 12-, and 10-bit data types use
the same BRAM as the 16-bit data type, which is the most
significant usage. In addition, the global accuracy drop
(compared with the floating-point performance) is affected by
the combination of two effects: quantization, which is more
significant when the number of fractional bits is low, and
overflow, which appears when the number of integer bits is
low. If an accuracy drop of less than 0.2% is considered
acceptable, at least six bits are required for the decimal part to
reduce the accuracy drop due to quantization. In the case of
overflow, the integer part must have at least six bits;
otherwise, the accuracy drop starts to increase owing to this
effect.

Fig. 6. BRAM, FF and LUT consumption in each implementation paradigm and global accuracy (AG) drop (respect to the
floating-point performance) over the 2022 dataset for each tested fixed-point data type.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3392271

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

G. Comparison with other implementations
Table VIII shows a comparison between the optimized

streaming implementation of the U-Net-based heart sound
segmentation algorithm and other existing implementations of
heart sound segmentation algorithms using deep learning. It is
worth noticing that, to the best of our knowledge, all other
existing implementations found in the literature are based on
CNNs. Additionally, as far as we know, this work is the only
one that has been implemented on an FPGA, while the other
two reported works have deployed on a CPU. This platform
diversity limits the fairness of the comparison. Nonetheless, it
shows the state-of-the-art in this field, setting the basis for
further research to improve accuracy, reduce inference times
or lower the power consumption. Firstly, the clock frequency
of this implementation is 4.8 times lower than the one
employed in [20] and 15 times lower than in [21]. This,
together with the fact that FPGAs are less power demanding
than CPUs would expectedly imply a significant decrease in
the power consumption of this implementation compared to
the other two. However, because only this work has reported a
power consumption estimation, a comparative study was not
possible. All works have used a CNN to perform the
segmentation, differing in their architecture. Kwiatkowski et
al. [20] used three convolutional layers with intercalated max-
pooling and batch-normalization layers, and Vakamullu et al.
[21] implemented just two convolutional layers followed by
max-pooling layers. Our model has 23 convolutional layers,
and uses the U-Net architecture, with encoding and decoding
stages. Given this, it is clear that our model has significantly
more complex than the other two. For this reason, the
classification results reported in this work achieved a more
accurate segmentation considering the four heart sound
components of a PCG, whereas [20] distinguished between S1,
S2 and the rest of the signal, and [21] limited the model to
only systole and diastole detection. Note that the three models

have been trained with different datasets, so performance may
depend on this factor. Finally, [20] reported a lower model
inference time than this work. However, this could be related
to the fact that they used a significantly smaller model with
only three convolutional layers, halving the number of bits
used in their implementation (8-bit representation against 16-
bit), and they used 4.8 times the frequency employed in this
work. Thus, equivalent or even lower inference times could be
achieved by porting this design to an FPGA with a higher
clock frequency. The work presented in [21] did not report any
inference times for their implementation.

VI. DISCUSSION AND CONCLUSIONS
To the best of our knowledge, this work presents for the

first time an exhaustive optimization study of the U-Net-based
heart sound segmentation algorithm, which is the current state-
of-the-art in this field, being tested in both the 2016
Physionet/CinC Challenge dataset and the CirCor DigiScope
Phonocardiogram dataset. To enable its implementation in an
FPGA, an HLS tool was used to achieve significant
improvements in terms of latency and logical resource usage,
which allow its implementation on a low-end FPGA with real-
time performance. As far as we know, there are not previously
reported works that contain an implementation on this
platform for heart-sound segmentation. The main result of this
work is the reduction in inference time achieved by the
optimized streaming implementation, compared to the baseline
version. The co-simulation results showed that it was reduced
from 82.12 to 29.27 ms, which is a 64% reduction of the
original inference time. Additionally, the use of BRAM, the
limiting FPGA resource, was also reduced by 3.9% in the
optimized streaming implementation, which reported 99%
BRAM usage, compared to the 103% in the baseline. These
two results have led to a significant 70% reduction in energy
per inference, which was 69 mJ in the baseline and 21 mJ in
the optimized streaming implementation. To achieve this,
different optimizations have been evaluated.

Firstly, the fact that hierarchical deep learning models can
be easily reduced was considered. This had a direct impact on
the number of MACC operations and, thus, on FPGA resource
consumption. Two additional reduction parameters were
identified in this study, proving that FPGA resource
consumption can decrease significantly while maintaining
segmentation model performance.

Secondly, two different implementation optimization
strategies were tested: a memory-sharing paradigm and a
streaming dataflow paradigm. Both strategies showed
improvements in FPGA resource consumption and execution
latency compared with the baseline implementation. Between
them, this study demonstrates that the streaming dataflow
implementation strategy obtains significantly better results
than memory-based implementations because it treats the
feature maps as a flow using FIFO queues, enabling the
overlapping execution of consecutive layers. This drastically
reduces the latency compared with memory-based approaches
but requires a redesign of the description code.

In addition, both implementation paradigms were optimized
with high-level directives, which were included in the
bottlenecks of the designs. This reduction in latency came at

TABLE VIII
COMPARISON BETWEEN THIS WORK AND OTHER HARDWARE

IMPLEMENTATION OF DEEP LEARNING -BASED MODEL FOR
HEART SOUND SEGMENTATION.

 Kwiatkowski et
al. [20]

Vakamullu et al.
[21] This work

Hardware
(freq.)

ARM Cortex-
M7 CPU

(480 MHz)

Rasp. Pi 3B ARM
Cortex-A53 CPU

(1.5 GHz)

Xilinx Zynq 7020
FPGA

(100 MHz)
#Classes 3 2 4

Datatype 8-bit integer 32-bit float Q8.8
(16-bit)

Dataset
Physionet/CinC
Challenge [22],

[23]

HS Challenge 2011
[35], Littman
Library [36],

Michigan HS [37]
and 8 volunteers

Physionet/CinC
Challenge [22], [23]

and CirCor DigiScope
Phonocardiogram

[23], [24]
#PCG-#Subjects 792-135 - (792, 3163)-(135, 942)

Model Tiny CNN 2-layers CNN U-Net-based (CNN)
#Conv. Layers 3 2 23

Acc. (%) 89.84 87.78 90.51
Inference time

(ms) 12 - 29

Power
consumption

(mW)
- - 722

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3392271

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

the cost of increased FPGA resource consumption, with the
BRAM close to 100% for both optimized implementations. If
a larger model with better accuracy is released in the future, its
implementation would require either a reduction of the FPGA
consumption at the expense of latency (fewer optimization
directives) or the use of larger FPGAs, which would increase
the cost of the system and its power consumption.

Through the development of the model optimization, some
limitations of the Vivado HLS tool were identified. For
example, HLS might not consider the AXI interfaces declared
at a high level to compute the latency, and the latency derived
from the streaming dataflow strategy at synthesis is not
reproduced in the C/RTL co-simulation, but it is still
significantly better than the memory-shared alternative.
Hence, even though this tool boosts the hardware design and
has been useful in significantly accelerating this model,
manual fine-tuning of the generated HDL might be necessary
to optimize this design completely.

As mentioned in Section I, few studies have implemented
deep learning models to segment PCGs, and they have used
small-sized architectures. Thus, to the best of our knowledge,
this work is the first to exhaustively study different
optimization strategies for implementing a large 1D U-Net-
based model with an estimated inference time of 29 ms using a
16-bit fixed-point representation. Considering that the length
of the input window for these models was N = 64 and the
sampling frequency was 50 Hz, a real-time response required
less than N/50 ≈ 1.28 s. Hence, it is feasible to implement this
model in a computer-aided decision system to automatically
identify the heart states in a PCG and potentially help
physicians identify abnormalities in the patient’s heart
recordings with more complex analysis algorithms. The
comparison with the state-of-the-art hardware
implementations of similar algorithms evidenced the impact
that the hardware optimization of this model had in the final
results, outperforming them in accuracy and achieving real-
time performance with significantly lower clock frequency.
This is related to lower power consumption, thus being a more
suitable solution for a low-cost and low-power computer-aid
system.

Finally, note that this is also reproducible for any U-Net-
based architecture, including the different model reduction
parameters and the two tested implementation optimization
strategies, which have been proven to accelerate the model in
a low-end FPGA.

In future works, to obtain a functional heart-sound
segmentation device attached to the stethoscope for a real-time
processing of the PCG, the preprocessing stage should also be
optimized and implemented on the same hardware platform.
To achieve this, an analogue-to-digital converter should be
introduced in the design without compromising the temporal
restrictions. Since the estimated inference time of the
segmentation part is 29 ms, there is a feasible temporal margin
of more than 1.2 s to read and preprocess the data obtained by
the sensor. Then, it is intended to perform an online evaluation
of the physical platform, thus validating the prototype of a
hand-held device capable of automatically detecting cardiac
abnormalities from a PCG at an early stage.

ACKNOWLEDGMENT
The authors thank I3A (Aragon Institute of Engineering

Research) for the use of High-Performance Computing (HPC)
cluster HERMES.

REFERENCES

[1] World Health Organization (WHO), “Cardiovascular diseases (CVDs).”
Accessed: Nov. 13, 2023. [Online]. Available:
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-
diseases-(cvds)

[2] S. Mangione and L. Z. Nieman, “Cardiac Auscultatory Skills of Internal
Medicine and Family Practice Trainees: A Comparison of Diagnostic
Proficiency,” JAMA, vol. 278, no. 9, p. 717, Sep. 1997, doi:
10.1001/jama.1997.03550090041030.

[3] S. Li, F. Li, S. Tang, and F. Luo, “Heart Sounds Classification Based on
Feature Fusion Using Lightweight Neural Networks,” IEEE Trans.
Instrum. Meas., vol. 70, pp. 1–9, 2021, doi:
10.1109/TIM.2021.3109389.

[4] A. Bhardwaj, S. Singh, and D. Joshi, “Explainable Deep Convolutional
Neural Network for Valvular Heart Diseases Classification Using PCG
Signals,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–15, 2023, doi:
10.1109/TIM.2023.3274174.

[5] H. Vermarien, “Phonocardiography,” in Encyclopedia of Medical
Devices and Instrumentation, 1st ed., J. G. Webster, Ed., Wiley, 2006.
doi: 10.1002/0471732877.emd203.

[6] S. E. Schmidt, C. Holst-Hansen, C. Graff, E. Toft, and J. J. Struijk,
“Segmentation of heart sound recordings by a duration-dependent
hidden Markov model,” Physiol. Meas., vol. 31, no. 4, pp. 513–529,
Apr. 2010, doi: 10.1088/0967-3334/31/4/004.

[7] D. Springer, L. Tarassenko, and G. Clifford, “Logistic Regression-
HSMM-based Heart Sound Segmentation,” IEEE Trans. Biomed. Eng.,
pp. 1–1, 2015, doi: 10.1109/TBME.2015.2475278.

[8] J. Oliveira, F. Renna, T. Mantadelis, and M. Coimbra, “Adaptive
Sojourn Time HSMM for Heart Sound Segmentation,” IEEE J. Biomed.
Health Inform., vol. 23, no. 2, pp. 642–649, Mar. 2019, doi:
10.1109/JBHI.2018.2841197.

[9] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
Networks for Biomedical Image Segmentation,” in Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2015, vol.
9351, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds., in
Lecture Notes in Computer Science, vol. 9351. , Cham: Springer
International Publishing, 2015, pp. 234–241. doi: 10.1007/978-3-319-
24574-4_28.

[10] F. Renna, J. Oliveira, and M. T. Coimbra, “Deep Convolutional Neural
Networks for Heart Sound Segmentation,” IEEE J. Biomed. Health
Inform., vol. 23, no. 6, pp. 2435–2445, Nov. 2019, doi:
10.1109/JBHI.2019.2894222.

[11] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel
Programming with CUDA: Is CUDA the parallel programming model
that application developers have been waiting for?,” Queue, vol. 6, no.
2, pp. 40–53, Mar. 2008, doi: 10.1145/1365490.1365500.

[12] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Programming
Standard for Heterogeneous Computing Systems,” Comput. Sci. Eng.,
vol. 12, no. 3, pp. 66–73, May 2010, doi: 10.1109/MCSE.2010.69.

[13] E. Wang et al., “Deep Neural Network Approximation for Custom
Hardware: Where We’ve Been, Where We’re Going,” ACM Comput.
Surv., vol. 52, no. 2, pp. 1–39, Mar. 2020, doi: 10.1145/3309551.

[14] C. N. Coelho et al., “Automatic heterogeneous quantization of deep
neural networks for low-latency inference on the edge for particle
detectors,” Nat Mach Intell, vol. 3, no. 8, pp. 675–686, Jun. 2021, doi:
10.1038/s42256-021-00356-5.

[15] Y. Umuroglu et al., “FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays,
Monterey California USA: ACM, Feb. 2017, pp. 65–74. doi:
10.1145/3020078.3021744.

[16] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: A Framework for
Mapping Convolutional Neural Networks on FPGAs,” presented at the
2016 IEEE Symposium on Field-Programmable Custom Computing
Machines, 2016, pp. 40–47. doi: 10.1109/FCCM.2016.22.

[17] A. Huang, Z. Cao, C. Wang, J. Wen, F. Lu, and L. Xu, “An FPGA-
Based On-Chip Neural Network for TDLAS Tomography in Dynamic

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3392271

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

15
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Flames,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–11, 2021, doi:
10.1109/TIM.2021.3115210.

[18] Xilinx Inc., “Zynq-7000 SoC Data Sheet: Overview.” 2018. Accessed:
Sep. 21, 2023. [Online]. Available:
https://www.xilinx.com/content/dam/xilinx/support/documents/data_she
ets/ds190-Zynq-7000-Overview.pdf

[19] A. C. Hernandez-Ruiz, D. Eneriz, N. Medrano, and B. Calvo, “Motor-
Imagery EEGNet-Based Processing on a Low-Spec SoC Hardware,” in
2021 IEEE Sensors, Sydney, Australia: IEEE, Oct. 2021, pp. 1–4. doi:
10.1109/SENSORS47087.2021.9639747.

[20] K. K. Kwiatkowski, D. P. Pau, T. Leung, and O. Di Marco,
“Phonocardiogram Segmentation with Tiny Computing,” in 2023 IEEE
International Conference on Consumer Electronics (ICCE), Las Vegas,
NV, USA: IEEE, Jan. 2023, pp. 1–4. doi:
10.1109/ICCE56470.2023.10043562.

[21] V. Vakamullu, S. Trivedy, M. Mishra, and A. Mukherjee,
“Convolutional Neural Network Based Heart Sounds Recognition on
Edge Computing Platform,” in 2022 IEEE International
Instrumentation and Measurement Technology Conference (I2MTC),
Ottawa, ON, Canada: IEEE, May 2022, pp. 1–6. doi:
10.1109/I2MTC48687.2022.9806693.

[22] C. Liu et al., “An open access database for the evaluation of heart sound
algorithms,” Physiol. Meas., vol. 37, no. 12, pp. 2181–2213, Dec. 2016,
doi: 10.1088/0967-3334/37/12/2181.

[23] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet:
Components of a New Research Resource for Complex Physiologic
Signals,” Circulation, vol. 101, no. 23, Jun. 2000, doi:
10.1161/01.CIR.101.23.e215.

[24] J. Oliveira et al., “The CirCor DigiScope Dataset: From Murmur
Detection to Murmur Classification,” IEEE J. Biomed. Health Inform.,
vol. 26, no. 6, pp. 2524–2535, Jun. 2022, doi:
10.1109/JBHI.2021.3137048.

[25] A. Dhillon and G. K. Verma, “Convolutional neural network: a review
of models, methodologies and applications to object detection,” Prog
Artif Intell, vol. 9, no. 2, pp. 85–112, Jun. 2020, doi: 10.1007/s13748-
019-00203-0.

[26] S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, and M.
K. Khan, “Medical Image Analysis using Convolutional Neural
Networks: A Review,” J Med Syst, vol. 42, no. 11, p. 226, Nov. 2018,
doi: 10.1007/s10916-018-1088-1.

[27] J. Cong, Bin Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Zhiru
Zhang, “High-Level Synthesis for FPGAs: From Prototyping to
Deployment,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 30, no. 4, pp. 473–491, Apr. 2011, doi:
10.1109/TCAD.2011.2110592.

[28] S. Lahti, P. Sjovall, J. Vanne, and T. D. Hamalainen, “Are We There
Yet? A Study on the State of High-Level Synthesis,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 38, no. 5, pp. 898–911,
May 2019, doi: 10.1109/TCAD.2018.2834439.

[29] Xilinx Inc., “Vivado Design Suite User Guide: High-Level Synthesis
(UG902), V2019.2.” 2020. Accessed: Sep. 21, 2023. [Online].
Available: https://docs.xilinx.com/v/u/2019.2-English/ug902-vivado-
high-level-synthesis

[30] Liang Huiying, L. Sakari, and H. Iiro, “A heart sound segmentation
algorithm using wavelet decomposition and reconstruction,” in
Proceedings of the 19th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. “Magnificent Milestones
and Emerging Opportunities in Medical Engineering” (Cat.
No.97CH36136), Chicago, IL, USA: IEEE, 1997, pp. 1630–1633. doi:
10.1109/IEMBS.1997.757028.

[31] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based Accelerator Design for Deep Convolutional Neural
Networks,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Monterey California
USA: ACM, Feb. 2015, pp. 161–170. doi: 10.1145/2684746.2689060.

[32] F. Chollet et al., “Keras.” 2015. Accessed: May 02, 2023. [Online].
Available: https://keras.io

[33] “Chapter B1: AMBA AXI4-Lite,” in AMBA AXI and ACE
ProtocolSpecification. AXI3, AXI4, and AXI4-Lite. ACE and ACE-Lite,
2013. Accessed: Sep. 21, 2023. [Online]. Available:

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI4-Lite-
Interface-Specification/AMBA-AXI4-Lite?lang=en

[34] ARM Ltd., “AMBA® AXI-Stream Protocol Specification.” 2021.
Accessed: Sep. 21, 2023. [Online]. Available:
https://developer.arm.com/documentation/ihi0051/b/?lang=en

[35] P. Bentley, G. Nordehn, M. Coimbra, and S. Mannor, “The PASCAL
Classifying Heart Sounds Challenge 2011.” 2011. Accessed: Jan. 30,
2024. [Online]. Available:
http://www.peterjbentley.com/heartchallenge/index.html

[36] 3M Littman, “Littman Library.” Accessed: Jan. 30, 2024. [Online].
Available:
https://web.archive.org/web/20200223212248/http://www.3m.com:80/h
ealthcare/littmann/library-intro.html

[37] Medical School University of Michigan, “Heart Sound and Murmur
Library.” Accessed: Jan. 30, 2024. [Online]. Available:
https://www.med.umich.edu/lrc/psb_open/html/repo/primer_heartsound/
primer_heartsound.html

Daniel Enériz (Graduate Student, IEEE)
received the B.S. degree in Physics in
2019 and the M.S. degree in Physics and
Physical Technologies in 2020 both from
the University of Zaragoza, Spain, where
he is currently working towards the PhD.
His current research in the Group of
Power Electronics and Microelectronics

of the Aragon Institute for Engineering Research (GEPM-I3A)
includes the design of electronic systems, intelligent
instrumentation, and the edge computing of Neural Networks.

Antonio J. Rodriguez-Almeida received
the B.S. degree in Telecommunications
Engineering in 2018 in the University of
Las Palmas de G.C., Spain and the M.S.
degree in Biomedical Engineering in 2020
in the Universitat Politècnica de València,
Spain. He is currently enrolled in the PhD
in the Institute for Applied
Microelectronics, in the University of Las

Palmas de G.C., focusing his research on the development on
Deep Learning models for chronic diseases management and
their hardware implementation.

Himar Fabelo received the
telecommunication engineer the master and
PhD degree in telecommunication
technologies from the University of Las
Palmas de G.C., Spain, in 2014, and 2019,
respectively. Since then, he has conducted
his research activity in the Institute for
Applied Microelectronics, University of Las

Palmas de Gran Canaria. In 2022, he obtained the Juan de La
Cierva Formación postdoctoral grant at the Fundación Canaria
Instituto de Investigación Sanitaria de Canarias. His research
interest area includes the use of machine learning techniques
applied to hyperspectral images in tumor tissue analysis in
real-time during surgery.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3392271

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

16
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Samuel Ortega received the BSs degree
in Telecommunication Engineering and
the MSc and Ph.D. degrees in
Telecommunication Technologies from
the University of Las Palmas de G.C.,
Spain, in 2015, 2016 and 2021. In 2021,
he started to work as Postdoctoral
Researcher at the Norwegian Institute of
Food Fisheries and Aquaculture Research

(NOFIMA), where he established as a permanent Research
Scientist in 2022. In 2023 he began working part-time as a
Research Scientist at UiT The Arctic University of Norway
while continuing his main position at NOFIMA. His research
interests are the use of hyperspectral imaging and machine
learning for medical and food quality applications

Francisco J. Balea-Fernandez graduated
in psychology from Pontifical University
of Salamanca in 2001. Between 2001-
2003 coursed the doctoral program of
clinical neuropsychology at the University
of Salamanca. He obtained a PhD in
psychology in 2007. Graduated in
Medicine from the University of Las
Palmas de Gran Canaria in 2011. Master´s

in Clinical Medicine from the Camilo José Cela University,
Madrid, 2016). In 2021, he received a Ph.D. in biomedical
research and doctor specializing in geriatrics. Part-time
professor at the ULPGC since 2011.

Gustavo M. Callico (Senior Member,
IEEE) received the M.S. degree in
telecommunication engineer in 1995 and
the Ph.D. degree and the European
Doctorate in 2003, all from the University
of Las Palmas de Gran Canaria. From
2022, he is a Full Professor at the ULPGC
and develops his research activities

Institute for Applied Microelectronics. His current fields of
research include hyperspectral systems for cancer detection,
artificial intelligence algorithms, real-time super-resolution
algorithms, synthesis-based design for SOCs and circuits for
multimedia processing and video coding standards.

Nicolás Medrano (Senior Member,
IEEE) received the B.Sc. and Ph.D.
degrees in physics from the University of
Zaragoza, Spain, in 1989 and 1998,
respectively. He is currently a Full
Professor of electronics with the Faculty
of Physics, University of Zaragoza, and a
member of the Group of Power
Electronics and Microelectronics of the

Aragon Institute for Engineering Research (GEPM-I3A),
University of Zaragoza. His current research interests include
hardware implementation of neural network models for signal
processing, smart sensor interfaces, wireless sensor networks,
and intelligent instrumentation.

Belén Calvo (Senior Member, IEEE)
received the B.Sc. degree in physics and
the Ph.D. degree in electronic
engineering from the University of
Zaragoza, Spain, in 1999 and 2004,
respectively. She is currently a Full
Professor of electronics with the Faculty
of Physics, University of Zaragoza, and a
member of the Group of Power

Electronics and Microelectronics of the Aragon Institute for
Engineering Research (GEPM-I3A), University of Zaragoza.
Her research interests include low-voltage low power CMOS
design, on-chip smart sensor interfaces and edge neural
network models.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3392271

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

	I. INTRODUCTION
	II. Background
	A. Convolutional Neural Networks

	III. Related Work
	IV. Methodology
	A. Model reduction strategy
	B. Implementation optimization strategies
	1) Memory-sharing optimization strategy
	2) Streaming dataflow optimization strategy

	V. Experiments
	A. Materials
	1) Datasets
	2) Target FPGA

	B. Model evaluation methodology
	1) Performance metrics
	2) Results

	C. HLS C Simulation
	D. Synthesis
	1) Memory-sharing implementation optimization
	2) Streaming dataflow implementation optimization

	E. C/RTL co-simulation
	F. Low-resolution fixed-point datatype effects
	G. Comparison with other implementations

	VI. Discussion and Conclusions
	Acknowledgment
	0B[1] World Health Organization (WHO), “Cardiovascular diseases (CVDs).” Accessed: Nov. 13, 2023. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
	1B[2] S. Mangione and L. Z. Nieman, “Cardiac Auscultatory Skills of Internal Medicine and Family Practice Trainees: A Comparison of Diagnostic Proficiency,” JAMA, vol. 278, no. 9, p. 717, Sep. 1997, doi: 10.1001/jama.1997.03550090041030.
	2B[3] S. Li, F. Li, S. Tang, and F. Luo, “Heart Sounds Classification Based on Feature Fusion Using Lightweight Neural Networks,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–9, 2021, doi: 10.1109/TIM.2021.3109389.
	3B[4] A. Bhardwaj, S. Singh, and D. Joshi, “Explainable Deep Convolutional Neural Network for Valvular Heart Diseases Classification Using PCG Signals,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–15, 2023, doi: 10.1109/TIM.2023.3274174.
	4B[5] H. Vermarien, “Phonocardiography,” in Encyclopedia of Medical Devices and Instrumentation, 1st ed., J. G. Webster, Ed., Wiley, 2006. doi: 10.1002/0471732877.emd203.
	5B[6] S. E. Schmidt, C. Holst-Hansen, C. Graff, E. Toft, and J. J. Struijk, “Segmentation of heart sound recordings by a duration-dependent hidden Markov model,” Physiol. Meas., vol. 31, no. 4, pp. 513–529, Apr. 2010, doi: 10.1088/0967-3334/31/4/004.
	6B[7] D. Springer, L. Tarassenko, and G. Clifford, “Logistic Regression-HSMM-based Heart Sound Segmentation,” IEEE Trans. Biomed. Eng., pp. 1–1, 2015, doi: 10.1109/TBME.2015.2475278.
	7B[8] J. Oliveira, F. Renna, T. Mantadelis, and M. Coimbra, “Adaptive Sojourn Time HSMM for Heart Sound Segmentation,” IEEE J. Biomed. Health Inform., vol. 23, no. 2, pp. 642–649, Mar. 2019, doi: 10.1109/JBHI.2018.2841197.
	8B[9] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, vol. 9351, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds., in Lecture Notes in Computer Science, vol. 9351. , Cham: Springer International Publishing, 2015, pp. 234–241. doi: 10.1007/978-3-319-24574-4_28.
	9B[10] F. Renna, J. Oliveira, and M. T. Coimbra, “Deep Convolutional Neural Networks for Heart Sound Segmentation,” IEEE J. Biomed. Health Inform., vol. 23, no. 6, pp. 2435–2445, Nov. 2019, doi: 10.1109/JBHI.2019.2894222.
	10B[11] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel Programming with CUDA: Is CUDA the parallel programming model that application developers have been waiting for?,” Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008, doi: 10.1145/1365490.1365500.
	11B[12] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems,” Comput. Sci. Eng., vol. 12, no. 3, pp. 66–73, May 2010, doi: 10.1109/MCSE.2010.69.
	12B[13] E. Wang et al., “Deep Neural Network Approximation for Custom Hardware: Where We’ve Been, Where We’re Going,” ACM Comput. Surv., vol. 52, no. 2, pp. 1–39, Mar. 2020, doi: 10.1145/3309551.
	13B[14] C. N. Coelho et al., “Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for particle detectors,” Nat Mach Intell, vol. 3, no. 8, pp. 675–686, Jun. 2021, doi: 10.1038/s42256-021-00356-5.
	14B[15] Y. Umuroglu et al., “FINN: A Framework for Fast, Scalable Binarized Neural Network Inference,” in Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey California USA: ACM, Feb. 2017, pp. 65–74. doi: 10.1145/3020078.3021744.
	15B[16] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: A Framework for Mapping Convolutional Neural Networks on FPGAs,” presented at the 2016 IEEE Symposium on Field-Programmable Custom Computing Machines, 2016, pp. 40–47. doi: 10.1109/FCCM.2016.22.
	16B[17] A. Huang, Z. Cao, C. Wang, J. Wen, F. Lu, and L. Xu, “An FPGA-Based On-Chip Neural Network for TDLAS Tomography in Dynamic Flames,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–11, 2021, doi: 10.1109/TIM.2021.3115210.
	33B[34] ARM Ltd., “AMBA® AXI-Stream Protocol Specification.” 2021. Accessed: Sep. 21, 2023. [Online]. Available: https://developer.arm.com/documentation/ihi0051/b/?lang=en
	17B[18] Xilinx Inc., “Zynq-7000 SoC Data Sheet: Overview.” 2018. Accessed: Sep. 21, 2023. [Online]. Available: https://www.xilinx.com/content/dam/xilinx/support/documents/data_sheets/ds190-Zynq-7000-Overview.pdf
	34B[35] P. Bentley, G. Nordehn, M. Coimbra, and S. Mannor, “The PASCAL Classifying Heart Sounds Challenge 2011.” 2011. Accessed: Jan. 30, 2024. [Online]. Available: http://www.peterjbentley.com/heartchallenge/index.html
	18B[19] A. C. Hernandez-Ruiz, D. Eneriz, N. Medrano, and B. Calvo, “Motor-Imagery EEGNet-Based Processing on a Low-Spec SoC Hardware,” in 2021 IEEE Sensors, Sydney, Australia: IEEE, Oct. 2021, pp. 1–4. doi: 10.1109/SENSORS47087.2021.9639747.
	35B[36] 3M Littman, “Littman Library.” Accessed: Jan. 30, 2024. [Online]. Available: https://web.archive.org/web/20200223212248/http://www.3m.com:80/healthcare/littmann/library-intro.html
	19B[20] K. K. Kwiatkowski, D. P. Pau, T. Leung, and O. Di Marco, “Phonocardiogram Segmentation with Tiny Computing,” in 2023 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA: IEEE, Jan. 2023, pp. 1–4. doi: 10.1109/ICCE56470.2023.10043562.
	36B[37] Medical School University of Michigan, “Heart Sound and Murmur Library.” Accessed: Jan. 30, 2024. [Online]. Available: https://www.med.umich.edu/lrc/psb_open/html/repo/primer_heartsound/primer_heartsound.html
	20B[21] V. Vakamullu, S. Trivedy, M. Mishra, and A. Mukherjee, “Convolutional Neural Network Based Heart Sounds Recognition on Edge Computing Platform,” in 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Ottawa, ON, Canada: IEEE, May 2022, pp. 1–6. doi: 10.1109/I2MTC48687.2022.9806693.
	21B[22] C. Liu et al., “An open access database for the evaluation of heart sound algorithms,” Physiol. Meas., vol. 37, no. 12, pp. 2181–2213, Dec. 2016, doi: 10.1088/0967-3334/37/12/2181.
	22B[23] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals,” Circulation, vol. 101, no. 23, Jun. 2000, doi: 10.1161/01.CIR.101.23.e215.
	23B[24] J. Oliveira et al., “The CirCor DigiScope Dataset: From Murmur Detection to Murmur Classification,” IEEE J. Biomed. Health Inform., vol. 26, no. 6, pp. 2524–2535, Jun. 2022, doi: 10.1109/JBHI.2021.3137048.
	24B[25] A. Dhillon and G. K. Verma, “Convolutional neural network: a review of models, methodologies and applications to object detection,” Prog Artif Intell, vol. 9, no. 2, pp. 85–112, Jun. 2020, doi: 10.1007/s13748-019-00203-0.
	25B[26] S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, and M. K. Khan, “Medical Image Analysis using Convolutional Neural Networks: A Review,” J Med Syst, vol. 42, no. 11, p. 226, Nov. 2018, doi: 10.1007/s10916-018-1088-1.
	26B[27] J. Cong, Bin Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Zhiru Zhang, “High-Level Synthesis for FPGAs: From Prototyping to Deployment,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 30, no. 4, pp. 473–491, Apr. 2011, doi: 10.1109/TCAD.2011.2110592.
	27B[28] S. Lahti, P. Sjovall, J. Vanne, and T. D. Hamalainen, “Are We There Yet? A Study on the State of High-Level Synthesis,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 38, no. 5, pp. 898–911, May 2019, doi: 10.1109/TCAD.2018.2834439.
	28B[29] Xilinx Inc., “Vivado Design Suite User Guide: High-Level Synthesis (UG902), V2019.2.” 2020. Accessed: Sep. 21, 2023. [Online]. Available: https://docs.xilinx.com/v/u/2019.2-English/ug902-vivado-high-level-synthesis
	29B[30] Liang Huiying, L. Sakari, and H. Iiro, “A heart sound segmentation algorithm using wavelet decomposition and reconstruction,” in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. “Magnificent Milestones and Emerging Opportunities in Medical Engineering” (Cat. No.97CH36136), Chicago, IL, USA: IEEE, 1997, pp. 1630–1633. doi: 10.1109/IEMBS.1997.757028.
	30B[31] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing FPGA-based Accelerator Design for Deep Convolutional Neural Networks,” in Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey California USA: ACM, Feb. 2015, pp. 161–170. doi: 10.1145/2684746.2689060.
	31B[32] F. Chollet et al., “Keras.” 2015. Accessed: May 02, 2023. [Online]. Available: https://keras.io
	32B[33] “Chapter B1: AMBA AXI4-Lite,” in AMBA AXI and ACE ProtocolSpecification. AXI3, AXI4, and AXI4-Lite. ACE and ACE-Lite, 2013. Accessed: Sep. 21, 2023. [Online]. Available: https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI4-Lite-Interface-Specification/AMBA-AXI4-Lite?lang=en

