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Abstract 

This work presents the advances of the UZ-ULPGC 
team in the Heart Murmur Detection from 
Phonocardiogram Recordings: The George B. Moody 
PhysioNet Challenge 2022. As the 2016 PhysioNet/CinC 
Challenge proved the success of the combination of a 
segmentation algorithm and a classifier, a deep learning-
based murmur detector is developed using the sequence 
segmentation-classification. The F. Renna et. al 2019 
model is used as the segmentation model, extracting each 
cardiac cycle from the PCG with state-of-the-art 
accuracy. Three deep models are tested for the 
classification: the C. Potes et al 2016 model, based on 
four independent 1D-convolutional feature extractors; a 
variation of it, enabling the combination of the features; 
and an autoencoder. Furthermore, to enable the unique 
diagnostic for the patient, a decision model that gathers 
all the patient-related cardiac cycles information is 
added. Limited performance is shown in all classifiers, 
probably due to the heavy classimbalance of the data at 
the cardiac cycle level and the minimal preprocessing 
chosen in the architecture. Note that our models have not 
been tested in the hidden challenge data. Hence, a 10-fold 
cross-validation over the public data is used to evaluate 
their performance, with the best model getting a weighted 
accuracy score in the murmur presence task of 0.54±0.14 
(that would rank in 204th out of 305 entries) and 
10735±2208 in Challenge cost score for the outcome task 
(that would rank in 120th out of 305 entries). 
 
 

1. Introduction 

In 2019, 17.9 million people died due to cardiovascular 
diseases (CVDs), being the leading cause of death 
globally. Moreover, the cardiac auscultation, which is the 

fundamental method for first screening CVDs, is difficult 
to learn. These two factors have motivated the 
development of automatic Phonocardiogram (PCG) 
analysis, since a computer-aided decision system based 
on auscultation would lead to accessible and accurate 
screening, with shorter diagnostic times, facilitating the 
referral of patients to cardiology doctors. The 2022 
George B. Moody PhysioNet Challenge [1][2] addresses 
this issue, pursuing the development of an open-source 
algorithm that performs two patient diagnostic tasks: 
heart murmur detection and clinical outcome 
identification; both using all the information available in 
multiple PCGs from several auscultation locations. 
Inspired by the success in the 2016 Physionet/CinC 
challenge [3] of PCG segmentation followed by cardiac 
cycle classification algorithms, we explore the 
performance of a deep learning-based segmentation-
classification architecture followed by a global rule 
algorithm that combines all the patient-related data at the 
cardiac cycle level to give a single diagnostic. Three 
classifier candidates are tested: the deep-learning part of 
the best scoring entry in the 2016 Challenge [4], a 
variation of it enabling mixture between input features, 
and an autoencoder; all of them showing limited 
performance in both classification tasks. The challenge 
database is part of the CirCor Digiscope dataset [5]. The 
publicly available data is composed by the PCG 
recordings from 942 patients with the annotation of their 
heart states, the demographic data and the murmur 
presence and clinical outcome labels. Furthermore, part of 
the 2016 PhysioNet/CinC database has been used in this 
work to pretrain the segmentation algorithm. 
 
2. Method 

In Figure 1 the proposed architecture is shown, which 
is based on the combination of a segmentation model, a 



 
Figure 1. General scheme of the architecture. First, the 
arbitrary-lengthen PCG is divided into cardiac cycles 
using a segmentation model. Then, each cardiac cycle is 
passed through a classification model, specifically trained 
for the target task (outcome classification or murmur 
detection) outputting a label in the cardiac cycle level. 
Finally, all the patient-related labels are combined using a 
global rule to give a single diagnostic label. Note that, to 
ease its visualization, just one PCG is represented in this 
patient final label generation. 

classifier and global rule algorithm, all of them with their 
preprocessing step. A detailed description of all the stages 
of the architecture is included in this section. 

 
2.1. Segmentation  

This stage is based on the work of Renna et al. 2019 
[6], where a 1D U-Net model was presented, setting the 
current state-of-the-art accuracy in PCG segmentation. 
Firstly, each heart sound is band-pass filtered between 25 
and 400 Hz. Then, the spike removal method described in 
[7] is applied. The next step is the generation of four 
different envelopes/envelograms: Hilbert envelope, 
Homomorphic envelogram, Power Spectral Density 
(PSD) envelope, and Wavelet envelope. Finally, the 
envelograms are downsampled to 50 Hz and normalized 
to have zero mean and unit variance. For each recording, 
the normalized envelograms are grouped in a 4-

dimensional signal. Besides, each time instant has an 
associated state label (S1, systole, S2, diastole). Patches 
of fixed length N=64 are extracted from with a specific 
stride τ=8. These portions of the signal are the input to the 
segmentation algorithm. 

The model has two stages: an encoder with four blocks 
and a decoder with another four blocks. In each encoding 
block the signal is compacted in time dimension while the 
number of channels is increased. This is done with two 
consecutive Conv1D layers with ReLU activation whose 
number of filters is the double of the block input 
channels. Then a MaxPooling layer is applied to halve the 
time dimension. The decoder blocks expand back the 
information in the time dimension while the number of 
channels is reduced. Additionally, there are skip 
connections between each pair of encoder-decoder blocks 
to allow direct transfer of information. Hence, a decoder 
block is based in one UpSampling layer that doubles the 
time dimension of the input, a Conv1D layer fed by the 
concatenation of the output of the UpSampling layer and 
the skip connection, and another Conv1D layer. Both 
Conv1D have the number of filter equal to the halve of 
the number of channels of the input, and ReLU activation. 
At the output of the model, the probabilities of being in 
each fundamental heart state in each time instant are 
given. Sequential max temporal modelling is used at this 
point to admit only allowable transitions between heart 
states, since it has a good balance between complexity 
and performance, as shown in [6]. Thus, the segmentation 
model is firstly trained in the 2016 challenge data with 
the procedure shown in [6], except for the epochs, which 
are fixed to 5. Then, it is trained in the 2022 challenge 
public data, with the same method. 

 
2.2. Classification 

In the classification step, the target is to individually 
classify in the selected task each cardiac cycle extracted 
from the segmentation. In this stage the preprocessing is 
the same as the used in [4]: a downsampling to 1 kHz, a 
2nd-order Butterworth bandpass filter between 25 and 
400 Hz, and the spike removal method from [7]. Then, 
the segmentation described above is applied to extract 
2.5 s cardiac cycles. If the cycle has shorter duration is 
zero padded. 

As commented in the Introduction, different models 
are tested. First, the C. Potes et al. convolutional model 
[4] is replicated. This model is based on four independent 
1D-convolutional feature extractors, which are fed by 
four exclusive band-pass filtered signals of the PCG (with 
ranges of [25-45], [45-80], [80-200], and [200-400] in 
Hz). Each 1D-convolutional extractor is based on two 
combinations of a Conv1D layer, the ReLU activation 
function and a MaxPooling to halve the time dimension. 
Both convolutional layers have a kernel size of 5, stride 1, 
the padding method is set to keep the same 



Block/Layer # filters # params. Output shape 
Input - - (2496, 1) 
Encoder_0 64 12480 (1248, 64) 
Encoder_1 32 9216 (624, 32) 
Encoder_2 16 2304 (312, 16) 
Encoder_3 8 576 (156, 8) 
Conv1D 4 96 (156, 4) 
Conv1D 4 48 (156, 4) 
Decoder_0 8 288 (312, 8) 
Decoder_1 16 1152 (624, 16) 
Decoder_2 32 4608 (1248, 32) 
Decoder_3 64 18432 (2496, 64) 
Conv1D 1 192 (2496, 1) 

Table 1. Autoencoder architecture. The rest of the details 
are the same as the segmentation architecture. Note that 
the length of the input signal has been shortened to 
2.496 s in order to enable the iterative halve of this 

 

dimensionality and there is no bias, but the first one has 8 
filters and the last one 4. After the two 
Conv1D+ReLU+MaxPooling combinations, all the 
features are concatenated and flattened. Then a multilayer 
perceptron (MLP) with a hidden layer of 20 neurons is 
placed. The output layer has the same number of neurons 
as the number of classes in the selected task (3 for 
murmur presence and 2 for outcome), and SoftMax 
activation is used. A dropout of 25 % is applied after the 
flattened layer, and another dropout of 50 % is placed 
after the hidden layer of the MLP, where a 10-2 L2 
activity regularization is also employed. The Adam 
optimizer with the Cross Entropy loss function is used to 
train the model during 100 epochs, with a batch size of 
1024 and a learning rate of 7·10-4. The weights obtained 
after the epoch with minimum loss function value in the 
validation set are saved. The hyperparameters employed 
here are the same as in [4], except for the epochs that are 
halved since the minimal validation loss is always in the 
first 100 epochs.  

Then, as a second classifier, the C. Potes et al. [4] 
model is modified by joining the 4 independent feature 
extractors into a single CNN. This makes the model 4 
times smaller approximately in terms of both feature 
maps and parameters. The same training procedure as the 
described in the previous classification model is applied 
for this one. 

Finally, an autoencoder-based model is also tested. 
Inspired by the performance of the Renna et al. 
segmentation model [6], a variation of it is tested to be 
used as an autoencoder. The number of filters in each 
encoding/decoding block is changed to 
compress/decompress the information in both the time 
and the channels dimension. Also, skip connections 
between the encoding and the decoding parts are removed 
to avoid direct signal transfer. Table 1 contains all the 
details of the architecture. It is trained to replicate the 
input signal, and only the normal samples (absence of 
murmur in the detection task, normal diagnostic for the 
outcome) are used in the training, with the purpose that 
the anomalies present in the abnormal samples could not 
be replicated. Then, an error function, as the Mean 
Absolute Error (MAE), computed between the model 
input and its output can be used to set a threshold to 
identify the normal classes vs. the abnormal ones. The 
Adam optimizer with the Mean Squared Error (MSE) loss 
function is used to train the autoencoder during 200 
epochs with batch size of 64 and learning rate of 10-3. As 
in the previous models, the weights corresponding to the 
minimum validation loss are saved. The selection of these 
hyperparameters is motivated by the necessity of a larger 
training process, due to the higher complexity of the 
signal replication problem compared to the segmentation 
task. 
 

2.3. Global rule 

For the final diagnostic algorithm, a MLP is in charge 
of analyze statistical metrics extracted from the arbitrary-
lengthen set of classifier outputs per patient in the 
cardiac-cycle level. These outputs are the probabilities of 
being in each class, thus having a total shape per patient 
of (ncycles, nclasses). The chosen statistic metrics are three 
per class: the mean and the standard deviation of the 
probabilities of the class and the number of cycles whose 
class probability is maximal divided by the total number 
of cycles, ncycles. Thus, the MLP has an input layer of 
3nclasses, that is followed by a hidden layer with a fixed 
number of neurons of 5 with ReLU activation. Finally, 
the output layer has the number of neurons equal to nclasses 
and SoftMax activation. It is trained with the Adam 
optimizer using the Cross Entropy loss function during 10 
epochs with a batch size of 16 and a learning rate of 10-3. 

 
3. Results  

In this section the performance results of each 
architecture stage are presented. The segmentation model 
is evaluated in the 2022 challenge data with 10-fold cross 
validation (CV), and its results are similar to the ones 
presented in [6] for the N=64, τ=8 model: 90.2±0.9 % in 
accuracy, 96.0±1.1 % in sensitivity, and 96.0±1.0 % in 
positive predictive value. 

Same validation procedure is applied for the CNN-
based classifiers, whose results are available in Table 2. 
Figure 2 contains the histogram of the MAE distribution 
for the presence and absence classes. Note that there is a 
high overlapping between these distributions, making 
impossible to set a threshold to differentiate the classes. 
Same phenomena appear for the outcome. Thus, 
autoencoder performance metrics could not be obtained.  



  Classification Global 
 Model Acc. AUROC Recall Specifity AUROC AUPRC F-measure Acc. W. Acc. Cost 

Pr
es

. Original 0.58±0.02 0.81±0.02 0.46±0.03 0.89±0.01 0.89±0.05 0.79±0.09 0.41±0.12 0.79±0.07 0.54±0.14 22042±4082 
Variation 0.56±0.02 0.80±0.02 0.41±0.03 0.91±0.01 0.79±0.09 0.65±0.09 0.45±0.09 0.80±0.06 0.58±0.10 21446±3777 

O
ut

c Original 0.60±0.03 0.64±0.04 0.60±0.03 0.60±0.03 0.69±0.03 0.67±0.03 0.78±0.07 0.79±0.06 0.74±0.09 10735±2208 
Variation 0.60±0.03 0.64±0.04 0.60±0.03 0.60±0.03 0.63±0.03 0.61±0.03 0.70±0.05 0.70±0.05 0.64±0.06 12718±2176 

Table 2. 10-fold CV results of the CNN-based classifiers for both tasks, presence (up) and outcome (down). 

 
Figure 2. Distribution of the Mean Absolute Error 
computed between the input and the output of the 
autoencoder for the murmur detection classes. 

The results of the final global rule, and therefore of the 
entire model, on the public data using 10-fold CV are 
available in Table 2. Unfortunately, no model could be 
evaluated with the hidden data.  

 
4. Discussion and Conclusions 

The different classification architectures assessed in 
this work achieved modest performance. Since the 
segmentation algorithm replicated the state-of-art results 
[6], this fact might be related with the need of a more 
complex architecture in the classification stage of our 
approach. Neither the CNN-based classifiers nor the 
autoencoder have been capable of extract features that 
clearly identify a cardiac cycle with a murmur or a patient 
that presents an abnormal clinical outcome. This is 
probably due to the complexity both tasks involve, where 
respiration noises, frictions and another external noise 
present in a realistic scenario affect the heart sound 
recording, as the CirCor dataset is. For this reason, we 
believe that is necessary a more sophisticated 
preprocessing that would reduce the impact of these 
noises’ sources. Additionally, the heavily imbalanced of 
classes that appears at the cardiac cycle level in the 
murmur detection problem hardens the correct class 
separation, being the justification of the better 
performance at the outcome. 
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